以台风烟花过境沿海陆上风电场期间,风电场内特别是风电机组位置的风速、风向和湍流强度的微尺度分布及其随时间的变化为研究对象,基于中尺度WRF模式的模拟结果建立CFD计算域的边界条件,建立台风大气边界层风速、风向廓线参数化模型,以及考虑中尺度热带气旋和台风边界层内卷效应的风场CFD计算模型。算例结果表明,所建立的台风大气边界层风场CFD计算模型可反映台风大气涡旋在风电场微尺度范围的流动特性,风电机组轮毂点的计算风速和实测的机舱风速符合较好,表明所研究的方法可进一步应用于台风影响地区风电场内风电机组台风风险的精细化评估,开展考虑台风风险的微观选址优化等。
Abstract
The objective of this research is to study the micro-scale distribution of wind speed, wind direction and turbulence intensity within a wind farm, especially at locations of the wind turbines, and its variation of those elements while the typhoon In-Fa passes through a coastal onshore wind farm. A micro-scale computational fluid dynamic(CFD) typhoon simulation tool is constructed; its boundary conditions established based on the data output of a mesoscale Weather Research & Forescasting(WRF) typhoon model. The coupling method involved applied a parameterized model of wind speed and wind direction profile for typhoon atmospheric boundary layer. A CFD solver considering cyclone’s rotating effect is established, the CFD model deal with wind direction variation along height due to inward air sucking effect near ground level. The case study results show that the typhoon CFD model is suitable for typhoon atmospheric boundary layer flow simulation, which produces the wind flow characteristics of landfall tropical cyclones passing wind farms. The method studied can be further applied to the refined assessment of typhoon risk of wind turbines in wind farms in typhoon-affected areas. The method can also be utilized to carry out micro-siting optimization considering typhoon risk.
关键词
热带气旋 /
陆上风电场 /
CFD /
大气边界层 /
中微尺度耦合
Key words
tropical cyclone /
onshore wind farm /
CFD /
atmospheric boundary layer /
meso-microscale coupling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 宋丽莉, 毛慧琴, 钱光明, 等. 热带气旋对风力发电的影响分析[J]. 太阳能学报, 2006, 27(9): 961-965.
SONG L L, MAO H Q, QIAN G M, et al.Analysis on the wind power by tropical cyclone[J]. Acta energiae solaris sinica, 2006, 27(9): 961-965.
[2] MENG Y, MATSUI M, HIBI K.An analytical model for simulation of the wind field in a typhoon boundary layer[J]. Journal of wind engineering and industrial aerodynamics, 1995, 56(2-3): 291-310.
[3] FANG G S, ZHAO L, CAO S Y, et al.A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency[J]. Journal of wind engineering and industrial aerodynamics, 2018, 175: 77-89.
[4] HONG X, KAREEM A, LI J.Validation of the fast intensity model for typhoon and its application to the estimation of typhoon wind hazard for the southeast coast of China[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104379.
[5] 廖孙策, 黄铭枫, 楼文娟, 等. 台风“山竹”影响下的城市风场数值模拟研究[J]. 空气动力学学报, 2021, 39(4): 107-116.
LIAO S C, HUANG M F, LOU W J, et al.Numerical simulation of a urban wind field under the influence of typhoon “Mangkhut”[J]. Acta aerodynamica sinica, 2021, 39(4): 107-116.
[6] 张晓东. 风电场风资源计算的CFD模型研究[J]. 现代电力, 2013, 30(4): 39-43.
ZHANG X D.CFD model for wind farm resource evaluation[J]. Modern electric power. 2013, 30(4): 39-43.
[7] DURÁN P, MEIΒNER C, CASSO P. A new meso-microscale coupled modelling framework for wind resource assessment: a validation study[J]. Renewable energy, 2020, 160: 538-554.
[8] CHE Y Z, SALAZAR A A, PENG S Y, et al.A multi-scale model for day-ahead wind speed forecasting: A case study of the Houhoku wind farm, Japan[J]. Sustainable energy technologies and assessments, 2022, 52: 101995.
[9] KADAVERUGU R, PUROHIT V, MATLI C, et al.Improving accuracy in simulation of urban wind flows by dynamic downscaling WRF with OpenFOAM[J]. Urban climate, 2021, 38: 100912.
[10] PIROOZMAND P, MUSSETTI G, ALLEGRINI J, et al.Coupled CFD framework with mesoscale urban climate model: application to microscale urban flows with weak synoptic forcing[J]. Journal of wind engineering and industrial aerodynamics, 2020, 197: 104059.
[11] 黄铭枫, 孙建平, 王义凡, 等. 基于天气预报模式和大涡模拟的台风风场多尺度耦合数值模拟[J]. 建筑结构学报, 2020, 41(2): 63-70.
HUANG M F, SUN J P, WANG Y F, et al.Multi-scale simulation of typhoon wind fields by coupling of weather research and forcasting model and large-eddy simulation[J]. Journal of building structures, 2020, 41(2): 63-70.
[12] 徐璐. 台风下考虑中小尺度耦合的风力机气动力模拟[D]. 南京: 南京航空航天大学, 2019.
XU L.Aerodynamic simulation of wind turbine considering meso-and micro-scale coupling under typhoon[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[13] 王硕, 柯世堂, 赵永发, 等. 台风-浪-流耦合作用下海上风力机基础结构水动力特性分析[J]. 太阳能学报, 2022, 43(10): 218-228.
WANG S,KE S T,ZHAO Y F, et al.Research on hydrodynamics of foundation structure of offshore wind turbine under typhoon-wave-current coupling[J]. Acta energiae solaris sinica, 2022, 43(10): 218-228.
[14] HE J Y, HE Y C, LI Q S, et al.Observational study of wind characteristics, wind speed and turbulence profiles during super typhoon Mangkhut[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104362.
[15] HE J Y, CHAN P W, LI Q S, et al.Observations of wind and turbulence structures of Super Typhoons Hato and Mangkhut over land from a 356 m high meteorological tower[J]. Atmospheric research, 2022, 265(2): 105910.
[16] COOK N J.The Deaves and Harris ABL model applied to heterogeneous terrain[J]. Journal of wind engineering and industrial aerodynamics, 1997, 66(3): 197-214.
[17] RICHARDS P J, HOXEY R P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model[J]. Journal of wind engineering and industrial aerodynamics, 1993, 46-47: 145-153.
[18] HE Y C, CHAN P W, LI Q S.Observations of vertical wind profiles of tropical cyclones at coastal areas[J]. Journal of wind engineering and industrial aerodynamics, 2016, 152: 1-14.
[19] GRYNING S E, BATCHVAROVA E, BRÜMMER B, et al. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer[J]. Boundary-layer meteorology, 2007, 124: 251-268.
基金
国家重点研发计划(2018YFB1501102)