针对于T源逆变器因漏感导致的直流链电压尖峰问题,通过对T源阻抗网络进行优化并调整各元件的位置,提出低直流链电压尖峰T源逆变器拓扑族。该文对新提出拓扑的工作模态进行详细分析,进而推导出各元件的电压、电流应力。此外,通过与传统T源逆变器在升压比方面进行对比,证明出在相同的直通占空比和耦合电感匝数比情况下,低直流链电压尖峰T源逆变器拥有更好的升压能力。最后,研制一套180 W的低直流链电压尖峰T源逆变器实验装置,实验结果验证了理论分析的正确性及所提拓扑结构在拥有高电压增益的同时能够提高输入电源利用率、抑制直流链电压尖峰的有效性。
Abstract
To solve the high DC-link voltage spikes in the T-source inverter, a family of low DC-link voltage spikes T-source inverter have been proposed. Through optimizing the conventional T-source impedance network, the energy in leakage inductance of coupled inductor can be recycled, and, therefore, avoided the DC-link voltage spikes across the switch bridge. In this paper, the working modes of new topologies are analyzed in detail, and the voltage and current stresses of each element are deduced. In addition, compared with the conventional T-source inverter in terms of boost ratio, it can be proved that the low DC-link voltage spikes T-source inverter has better boost capability under the same shoot-through duty ratio and coupling inductor turns ratio. Finally, a 180 W prototype of low DC voltage spikes T-source inverter has been performed. The experimental results verified the correctness of the theoretical analysis and, effectiveness of the proposed topology structures possessing higher utilization of input power and voltage gain as well as suppression of DC-link voltage spikes.
关键词
T源逆变器 /
阻抗网络优化 /
尖峰抑制 /
电压增益 /
元件应力
Key words
T-source inverter /
impedance network optimization /
voltage spike suppression /
voltage gain /
component stresses
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ARDASHIR J F,SABAHI M,HOSSEINI S H,et al.A single-phase transformerless inverter with charge pump circuit concept for grid-tied PV applications[J]. IEEE transactions on industrial electronics, 2017, 64(7): 5403-5415.
[2] 郭磊磊, 李伟韬, 李琰琰, 等. LC滤波型逆变器并网电压鲁棒预测控制[J]. 电力自动化设备, 2022, 42(6): 90-95.
GUO L L,LI W T,LI Y Y, et al.Robust predictive control of grid-connected voltage for LC filter type inverter[J].Electric power automation equipment,2022,42(6): 90-95.
[3] LIU H P,LI Y H,LIU K,et al.Extended quasi-Y-source inverter with suppressed inrush and leakage effects[J]. IET power electronics, 2019, 12(4): 719-728.
[4] 彭方正, 房绪鹏, 顾斌, 等. Z源变换器[J]. 电工技术学报, 2004,19(2): 47-51.
PENG F Z,FANG X P,GU B,et al.Z-source converter[J]. Transactions of China Electrotechnical Society,2004,19(2): 47-51.
[5] ELLABBAN O, ABU-RUB H.Z-source inverter: topology improvements review[J]. IEEE industrial electronics magazine, 2016, 10(1): 6-24.
[6] 房绪鹏, 林强, 王晓丽, 等. 一种新型电源嵌入式Z源逆变器[J]. 电源学报, 2022, 20(4): 61-68.
FANG X P,LIN Q,WANG X L,et al.Novel power supply embedded Z-source inverter[J]. Journal of power supply,2022, 20(4): 61-68.
[7] KIM K,CHA H,KIM H G.A new single-phase switched-coupled-inductor DC-AC inverter for photovoltaic systems[J]. IEEE transactions on power electronics,2017,32(7):5016-5022.
[8] ANDERSON J, PENG F Z.Four quasi-Z-source inverters[C]//2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 2008: 2743-2749.
[9] NGUYEN M K, LIM Y C, CHO G B.Switched-inductor quasi-Z-source inverter[J]. IEEE transactions on power electronics, 2011, 26(11): 3183-3191.
[10] 刘贇, 丁新平, 赵德林, 等. 新型倍压-Z源逆变器[J]. 太阳能学报, 2021, 42(8): 133-139.
LIU Y,DING X P,ZHAO D L,et al.Novel Z-source inverter with voltage multiplier unit[J]. Acta energiae solaris sinica, 2021, 42(8): 133-139.
[11] 沈琳钰, 姚晓东, 杨洋. 基于光伏发电的改进型Z源逆变器[J]. 电源技术, 2021, 45(4): 540-544.
SHEN L Y,YAO X D,YANG Y.Improved Z-source inverter based on photovoltaic power generation[J].Chinese journal of power sources, 2021,45(4):540-544.
[12] 张民, 李海滨,郝杨阳, 等. 一种混合型阻抗源逆变器的研究[J]. 太阳能学报, 2021, 42(11): 27-32.
ZHANG M, LI H B,HAO Y Y, et al.Research on a hybrid impedance source inverter[J]. Acta energiae solaris sinica, 2021, 42(11): 27-32.
[13] LOH P C, LI D, BLAABjERG F. Γ-Z-source inverters[J]. IEEE transactions on power electronics, 2013, 28(11):4880-4884.
[14] SIWAKOTI Y P, LOH P C, BLAABJERG F, et al.Y-source impedance network[C]//2014 IEEE Applied Power Electronics Conference and Exposition-APEC. Fort Worth, TX, USA, 2014: 3362-3366.
[15] ADAMOWICZ M.LCCT-Z-source inverters[C]//2011 10th International Conference on Environment and Electrical Engineering, Rome, Italy, 2011.
[16] QIAN W,PENG F Z,CHA H.Trans-Z-source inverters[J].IEEE transactions on power electronics,2011,26(12):3453-3463.
[17] STRZELECKI R,ADAMOWICZ M,STRZELECKA N,et al.New type T-source inverter[C]//2009 Compatibility and Power Electronics, Badajoz, Spain, 2009.
[18] ZHONG Y M,XU D G,ZHANG D L,et al.Modeling and control of the improved Trans-Z-Source inverter[C]//2014 9th IEEE Conference on Industrial Electronics and Applications. Hangzhou, China, 2014.
[19] LIU H P, ZHOU B, LI Y H, et al.High-efficiency T-source inverter with low voltage spikes across the switch bridge[J]. IEEE transactions on power electronics,2020,35(10): 10554-10566.