基于变分非线性调频模式分解的直驱式波浪发电系统控制

罗琦, 杨俊华, 王超凡, 黄逸, 梁昊晖

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 476-482.

PDF(2023 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2023 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 476-482. DOI: 10.19912/j.0254-0096.tynxb.2022-0769

基于变分非线性调频模式分解的直驱式波浪发电系统控制

  • 罗琦, 杨俊华, 王超凡, 黄逸, 梁昊晖
作者信息 +

OUTPUT POWER PREDICTION OF WAVE POWER SYSTEM BASED ONVARIATIONAL MODEL DECOMPOSITION AND VECTORAUTOREGRESSIVE MODEL

  • Luo Qi, Yang Junhua, Wang Chaofan, Huang Yi, Liang Haohui
Author information +
文章历史 +

摘要

海浪的非平稳特性会影响直驱式波浪发电系统能量捕获,为此提出基于脊线检测与变分非线性调频模式分解的控制方案。采用短时傅里叶变换方法分析波浪激励力,结合脊线检测设定初始频率;应用变分非线性调频模式分解法分离波浪激励力,获得若干模式分量并提取其瞬时频率;通过计算各模式分量的能量含量确定主导分量,根据其瞬时频率动态调整动力输出装置阻尼,搭建直驱式波浪发电系统模型。仿真结果表明,所提方案能量吸收性能好、输出平均功率高,可有效改善直驱式波浪发电装置性能。

Abstract

In order to reduce the influence of wave non-smooth characteristics on the energy absorption of direct-drive wave power system, the ridge detection and variational nonlinear chirp mode decomposition is proposed as the control scheme. Using the short-time Fourier transform method to analyze the wave excitation force, the initial frequency is set combined with the ridge detection; using the variational nonlinear chirp mode decomposition method to separate the wave excitation force, obtain several mode components and extract their instantaneous frequencies. Through calculating the energy content of each mode component to determine the dominant component, the damping of the power output device is dynamically adjusted according to its instantaneous frequency to build a model of the direct-drive wave power generation system. Results of the simulation demonstrate that this proposal provides better energy absorption capability and more average power output, thus effectively increasing the power absorption performance of the direct-drive wave power system.

关键词

波浪发电系统 / 波能转换 / 脊线检测 / 变分非线性调频模式分解 / 功率优化

Key words

wave power system / wave energy conversion / ridge detection / variational nonlinear chirp mode decomposition / power optimization

引用本文

导出引用
罗琦, 杨俊华, 王超凡, 黄逸, 梁昊晖. 基于变分非线性调频模式分解的直驱式波浪发电系统控制[J]. 太阳能学报. 2023, 44(9): 476-482 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0769
Luo Qi, Yang Junhua, Wang Chaofan, Huang Yi, Liang Haohui. OUTPUT POWER PREDICTION OF WAVE POWER SYSTEM BASED ONVARIATIONAL MODEL DECOMPOSITION AND VECTORAUTOREGRESSIVE MODEL[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 476-482 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0769
中图分类号: TM619   

参考文献

[1] 洪岳, 潘剑飞, 刘云, 等. 直驱波浪能发电系统综述[J]. 中国电机工程学报, 2019, 39(7): 1886-1900.
HONG Y, PAN J F, LIU Y, et al.A review on linear generator based wave energy conversion systems[J]. Proceedings of the CSEE, 2019, 39(7): 1886-1900.
[2] 邱孟, 杨俊华, 林汇金, 等. 先进控制技术在波浪发电系统中的应用[J]. 电机与控制应用, 2021, 48(2): 13-21.
QIU M, YANG J H, LIN H J, et al.Application of modern control technology in wave energy conversion system[J]. Electric machines & control application, 2021, 48(2): 13-21.
[3] 康庆, 肖曦, 聂赞相, 等. 直驱型海浪发电系统输出功率优化控制策略[J]. 电力系统自动化, 2013, 37(3): 24-29.
KANG Q, XIAO X, NIE Z X, et al.An optimal control strategy for output power of the directly driven wave power generation system[J]. Automation of electric power systems, 2013, 37(3): 24-29.
[4] 肖曦, 摆念宗, 康庆, 等. 波浪发电系统发展及直驱式波浪发电系统研究综述[J]. 电工技术学报, 2014, 29(3): 1-11.
XIAO X, BAI N Z, KANG Q, et al.A review of the development of wave power system and the research on direct-drive wave power system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 1-11.
[5] FALNES J, KURNIAWAN A.Ocean waves and oscillating systems: linear interactions including wave-energy extraction[M]. 2nd edition. Cambridge: Cambridge University Press, 2020.
[6] 杨金明, 黄伟. 直驱式波浪发电系统的状态切换控制方法[J]. 华南理工大学学报(自然科学版), 2021, 49(2): 1-8.
YANG J M, HUANG W.State switching control method for direct-drive wave power generation system[J]. Journal of South China University of Technology(natural science edition), 2021, 49(2): 1-8.
[7] 卢思灵, 杨俊华, 沈辉, 等. 直驱式波浪发电系统的经济模型预测控制[J]. 电测与仪表, 2021, 58(3): 131-138.
LU S L, YANG J H, SHEN H, et al.Economic model predictive control of direct-drive wave power generation systems[J]. Electrical measurement & instrumentation, 2021, 58(3): 131-138.
[8] 吴峰, 王飞, 顾康慧, 等. 基于MEEMD-ARIMA模型的波浪能发电系统输出功率预测[J]. 电力系统自动化, 2021, 45(1): 65-70.
WU F, WANG F, GU K H, et al.Output power prediction of wave energy generation system based on modified ensemble empirical mode decomposition-autoregressive integrated moving average model[J]. Automation of electric power system, 2021, 45(1): 65-70.
[9] 黄宣睿, 孙凯, 肖曦. 基于平均功率估算的直驱海浪发电最大功率点跟踪控制方法[J]. 电力系统自动化, 2016, 40(14): 51-57.
HUANG X R, SUN K, XIAO X.Maximum power point-tracking control method for direct-drive wave energy generation based on average power estimation[J]. Automation of electric power systems, 2016, 40(14): 51-57.
[10] 陈海峰, 杨俊华, 沈辉, 等. 基于主频预估的波浪发电系统自适应滑模控制[J]. 计算机仿真, 2020, 37(3): 94-99.
CHEN H F, YANG J H, SHEN H, et al.Adaptive sliding model control of wave power generation system based on dominant frequency estimation[J]. Computer simulation, 2020, 37(3): 94-99.
[11] JAMA M, MON B F, WAHYUDIE A, et al.Maximum energy capturing approach for heaving wave energy converters using an estimator-based finite control set model predictive control[J]. IEEE access, 2021, 9: 67648-67659.
[12] 黄宝洲, 杨俊华, 沈辉, 等. 基于FFT的直驱式波浪发电系统功率优化控制[J]. 太阳能学报, 2021, 42(3): 206-213.
HUANG B Z, YANG J H, SHEN H, et al.Power optimization control of drive wave power system based on FFT[J]. Acta energiae solaris sinica, 2021, 42(3): 206-213.
[13] GARCIA-ROSA P B, RINGWOOD J V, FOSSO O B, et al. The impact of time-frequency estimation methods on the performance of wave energy converters under passive and reactive control[J]. IEEE transactions on sustainable energy, 2019, 10(4): 1784-1792.
[14] CANTARELLAS A M, REMON D, RODRIGUEZ P.Adaptive vector control of wave energy converters[J]. IEEE transactions on industry applications, 2017, 53(3): 2382-2391.
[15] GARCIA-ROSA P B, KULIA G, RINGWOOD J V, et al. Real-time passive control of wave energy converters using the hilbert-huang transform[J]. IFAC-papersonline, 2017, 50(1): 14705-14710.
[16] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[17] CHEN S Q, DONG X J, PENG Z K, et al.Nonlinear chirp mode decomposition: a variational method[J]. IEEE transactions on signal processing, 2017, 65(22): 6024-6037.
[18] 黄秀秀,杨金明,陈渊睿,等. 基于PCHD模型的振荡浮子式波浪发电系统的无源控制[J]. 电测与仪表, 2019, 56(7): 107-112.
HUANG X X, YANG J M, CHEN Y R, et al.Passivity based control of oscillating buoy wave power system based on PCHD model[J]. Electrical measurement & instrumentation, 2019, 56(7): 107-112.
[19] 刘云鹏, 王江伟, 裴少通, 等. 基于短时傅里叶变换和稀疏表示的局放识别分类方法[J]. 电测与仪表, 2019, 56(23): 31-36.
LIU Y P, WANG J W, PEI S T, et al.Method for identifying and classifying partial discharge based on short time Fourier transform and s parse representation[J]. Electrical measurement & instrumentation, 2019, 56(23): 31-36.
[20] 张虹, 徐志豪, 王迎丽, 等. 风电场次同步振荡非线性模态分解与参数辨识[J]. 电网技术, 2022, 46(1): 195-203.
ZHANG H, XU Z H, WANG Y L, et al.Modal identification of subsynchronous oscillation caused by new energy grid connection[J]. Power system technology, 2022, 46(1): 195-203.
[21] 王丽馨, 蔡国伟, 杨德友, 等. 基于自适应变分模态分解的电力系统机电振荡特征提取[J]. 电网技术, 2019, 43(4): 1387-1395.
WANG L X, CA G W, YANG D Y, et al.Extracting modes from electromechanical oscillation signals for power system based on adaptive variational mode decomposition[J]. Power system technology, 2019, 43(4): 1387-1395.
[22] 赵雅琴, 聂雨亭, 吴龙文, 等. 基于脊路跟踪的变分非线性调频模态分解方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1874-1882.
ZHAO Y Q, NIE Y T, WU L W, et al.Multi-component signal separation using variational nonlinear chirp mode decomposition based on ridge tracking[J]. Journal of Zhejiang University(engineering science), 2020, 54(10): 1874-1882.
[23] CHEN S Q, PENG Z K, YANG Y, et al.Intrinsic chirp component decomposition by using Fourier series representation[J]. Signal processing, 2017, 137: 319-327.

基金

国家自然科学基金(51370265); 广东省教育部产学研合作专项资金(2013B090500089); 广东省自然科学基金(2018A030313010); 广州市科技计划(202102021135)

PDF(2023 KB)

Accesses

Citation

Detail

段落导航
相关文章

/