尾缘变弯对翼型气弹特性的影响分析

李原, 陈嘉佳, 陈晓静, 许移庆, 沈昕, 杜朝辉

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 405-410.

PDF(2847 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2847 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 405-410. DOI: 10.19912/j.0254-0096.tynxb.2022-0774

尾缘变弯对翼型气弹特性的影响分析

  • 李原1, 陈嘉佳2, 陈晓静3, 许移庆3, 沈昕2, 杜朝辉2
作者信息 +

INFLUENCE OF TRAILING EDGE MORPHING ON AEROELASTIC

  • Li Yuan1, Chen Jiajia2, Chen Xiaojing3, Xu Yiqing3, Shen Xin2, Du Zhaohui2
Author information +
文章历史 +

摘要

对于可进行尾缘变弯的二维翼型,研究其不同变弯形式对系统气弹特性的影响。研究基于数学建模方法,推导受控变弯翼型的气弹动力学方程,并建立相应的动态失速模型进行气动计算。对定常变弯、简谐变弯两种常见工况下系统的临界速度变化进行分析对比,发现定常变弯对气弹稳定性影响较小,简谐变弯的影响也可归纳为受迫振荡。在对结果的观察中发现反相的攻角–弯度角相位对振幅发散具有一定的抑制作用,据此进一步研究受控反相变弯下的气弹特性,发现一定的控制参数下确可抑制颤振出现,但也可能导致系统出现新的位移响应形式。

Abstract

The influence of different morphing methods on aeroelasticity of trailing edge morphing airfoil was studied. Based on mathematical modeling method, the dynamic equation was derived and the corresponding dynamic stall model was built for aerodynamic calculation. Variation of critical velocity under steady morphing and harmonic morphing was studied, finding steady morphing only has minor aeroelastic influence and a harmonic morphing affects the system in the way of forced oscillation. Observation on the results indicates an opposite angle of attack-morphing angle phase can suppress the flutter to some extent. Then a further study regarding controlled opposite phase morphing is carried, finding under some control parameter the flutter can be refrained above the critical velocity, but may also leads to new kinds of aeroelastic response in other cases.

关键词

风力机翼型 / 气动载荷 / 气动失速 / 变弯翼型 / 颤振

Key words

wind turbines / airfoils / aerodynamic loads / aerodynamic stalling / morphing / flutter

引用本文

导出引用
李原, 陈嘉佳, 陈晓静, 许移庆, 沈昕, 杜朝辉. 尾缘变弯对翼型气弹特性的影响分析[J]. 太阳能学报. 2023, 44(9): 405-410 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0774
Li Yuan, Chen Jiajia, Chen Xiaojing, Xu Yiqing, Shen Xin, Du Zhaohui. INFLUENCE OF TRAILING EDGE MORPHING ON AEROELASTIC[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 405-410 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0774
中图分类号: TK89   

参考文献

[1] 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1): 136-155.
WANG B W, YANG Y, QIAN Z S, et al.Technical development of variable camber wing: review[J]. Acta aeronautica et astronautica sinica, 2022, 43(1): 136-155.
[2] HETRICK J, OSBORN R, KOTA S, et al.Flight testing of mission adaptive compliant wing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii USA, 2007: 1709.
[3] JODIN G, MOTTA V, SCHELLER J, et al.Dynamics of a hybrid morphing wing with active open loop vibrating trailing edge by time-resolved PIV and force measures[J]. Journal of fluids and structures, 2017, 74: 263-290.
[4] KAN Z, LI D C, XIANG J W, et al.Delaying stall of morphing wing by periodic trailing-edge deflection[J]. Chinese journal of aeronautics, 2020, 33(2): 493-500.
[5] BERNHAMMER L O, VAN KUIK G A M, DE BREUKER R. Fatigue and extreme load reduction of wind turbine components using smart rotors[J]. Journal of wind engineering and industrial aerodynamics, 2016, 154: 84-95.
[6] 张文广, 王媛媛, 刘瑞杰, 等. 风力机智能叶片颤振建模及主动控制仿真[J]. 动力工程学报, 2019, 39(9): 758-764.
ZHANG W G, WANG Y Y, LIU R J, et al.Flutter modeling and active control simulation of smart wind turbine blades[J]. Journal of Chinese Society of Power Engineering, 2019, 39(9): 758-764.
[7] ZHANG J Y, SHAW A D, WANG C, et al.Aeroelastic model and analysis of an active camber morphing wing[J]. Aerospace science and technology, 2021, 111: 106534.
[8] THEODORSEN T.General theory of aerodynamic instability and the mechanism of flutter[R]. NACA Technical Report, NACA-TR-496, 1949.
[9] ANDERSEN P B, GAUNAA M, BAK C, et al.A dynamic stall model for airfoils with deformable trailing edges[J]. Wind energy, 2009, 12(8): 734-751.
[10] AHAUS L A.An airloads theory for morphing airfoils in dynamic stall with experimental correlation[M]. ST. Louis: Washington University in St. Louis, 2010.
[11] DOS SANTOS L G P, MARQUES F D. Nonlinear aeroelastic analysis of airfoil section under stall flutter oscillations and gust loads[J]. Journal of fluids and structures, 2021, 102: 103250.
[12] BETHI R V, GALI S V, VENKATRAMANI J.Response analysis of a pitch-plunge airfoil with structural and aerodynamic nonlinearities subjected to randomly fluctuating flows[J]. Journal of fluids and structures, 2020, 92: 102820.
[13] TRUONG KV.A semi-empirical model of unsteady aerodynamics for wind turbines and its application to the S809 airfoil[J]. ArXiv, 2018, DOI: 10.13140/RG.2.2 22769.74081.
[14] KRZYSIAK A, NARKIEWICZ J.Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies[J]. Journal of aircraft, 2006, 43(2): 407-418.

基金

国家重点研发计划(2020YFB1506601); 上海市科技创新行动计划(20dz1205300)

PDF(2847 KB)

Accesses

Citation

Detail

段落导航
相关文章

/