抗生素菌渣热化学处置利用方式的研究现状及展望

魏潇, 黄胜, 吴幼青, 吴诗勇, 杨金会

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 440-448.

PDF(1757 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1757 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 440-448. DOI: 10.19912/j.0254-0096.tynxb.2022-0786

抗生素菌渣热化学处置利用方式的研究现状及展望

  • 魏潇1, 黄胜1, 吴幼青1, 吴诗勇1,2, 杨金会2
作者信息 +

CURRENT RESEARCH AND PROSPECT FOR THERMOCHMICAL TREATMENT OF ANTIBIOTIC MYCELIAL RESIDUE

  • Wei Xiao1, Huang Sheng1, Wu Youqing1, Wu Shiyong1,2, Yang Jinhui2
Author information +
文章历史 +

摘要

结合中国抗生素菌渣(AMR)的现状,对AMR的类别、性质和危害进行简要介绍,综述焚烧、水热和热解等各类热化学处置利用技术,并对各项技术的研究进展进行分析讨论,重点对水热和热解技术的反应过程进行概述,对未来发展提供一些建议和展望。指出采用两种或多种技术联合的方式对实现AMR的减量化、无害化处置和资源化利用具有较好的应用前景。

Abstract

Based on the current situation of antibiotic mycelial residue in China, this paper introduced briefly the categories, properties and hazards of AMR, and various thermochemical treatment and utilization technologies such as combustion, hydrothermal technology and pyrolysis were systematically reviewed. And the research progress of each technology were analyzed, and some suggestions and prospects for future development are put forward. It is also pointed out that the combination of two or more technologies has good application prospects to realize the reduction and harmless treatment, and efficient utilization of resources and energy of AMR.

关键词

热解 / 水热 / 焚烧 / 抗生素菌渣 / 热化学处理 / 资源化利用

Key words

pyrolysis / hydrothermal / incineration / antibiotic mycelial residue / thermochemical treatment / resource utilization

引用本文

导出引用
魏潇, 黄胜, 吴幼青, 吴诗勇, 杨金会. 抗生素菌渣热化学处置利用方式的研究现状及展望[J]. 太阳能学报. 2023, 44(9): 440-448 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0786
Wei Xiao, Huang Sheng, Wu Youqing, Wu Shiyong, Yang Jinhui. CURRENT RESEARCH AND PROSPECT FOR THERMOCHMICAL TREATMENT OF ANTIBIOTIC MYCELIAL RESIDUE[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 440-448 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0786
中图分类号: TK513.5   

参考文献

[1] YAN C X, YANG Y, ZHOU J L, et al.Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment[J]. Environmental pollution, 2013, 175: 22-29.
[2] CHEN W, GENG Y, HONG J L, et al.Life cycle assessment of antibiotic mycelial residues management in China[J]. Renewable and sustainable energy reviews, 2017, 79: 830-838.
[3] HONG C, WANG Z Q, XING Y, et al.Investigation of free radicals and carbon structures in chars generated from pyrolysis of antibiotic fermentation residue[J]. RSC advances, 2016, 6(112): 111226-111232.
[4] 郭斌, 贡丽鹏, 刘仁平, 等. 土霉素菌渣的热解特性及动力学研究[J]. 太阳能学报, 2013, 34(9): 1504-1508.
GUO B, GONG L P, LIU R P, et al.Study on pyrolysis haracteristics and kinetics of terramycin bacterial residue[J]. Acta energiae solaris sinica, 2013, 34(9): 1504-1508.
[5] ZHANG S H, CHEN Z Q, WEN Q X, et al.Assessment of maturity during co-composting of penicillin mycelial dreg via fluorescence excitation-emission matrix spectra: characteristics of chemical and fluorescent parameters of water-extractable organic matter[J]. Chemosphere, 2016, 155: 358-366.
[6] JIANG X G, FENG Y H, LYU G J, et al.Bioferment residue: TG-FTIR study and cocombustion in a MSW incineration plant[J]. Environmental science & technology, 2012, 46(24): 13539-13544.
[7] PRUDEN A, LARSSON D G J, AEMZQUITA A, et al. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment[J]. Environmental health perspectives, 2013, 121(8): 878-885.
[8] XU W H, ZHANG G, LI X D, et al.Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta(PRD), South China[J]. Water research, 2007, 41(19): 4526-4534.
[9] World Health Organization.Antimicrobial resistance: global report on surveillance[R], 2014.
[10] WANG C A, ZHOU L, FAN G F, et al.Experimental study on ash morphology, fusibility, and mineral transformation during co-combustion of antibiotic filter residue and biomass[J]. Energy, 2021, 217: 119345.
[11] YANG S J, ZHU X D, WANG J S, et al.Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/MS techniques[J]. Bioresource technology, 2015, 193: 156-163.
[12] MA D C, ZHANG G Y, ZHAO P T, et al.Hydrothermal treatment of antibiotic mycelial dreg: more understanding from fuel characteristics[J]. Chemical engineering journal, 2015, 273: 147-155.
[13] CHEN Y, DU L, LI S G, et al.Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar[J]. Journal of hazardous materials, 2021, 402: 123826.
[14] 边炳鑫, 赵由才, 乔艳云. 农业固体废物的处理与综合利用[M]. 2版. 北京: 化学工业出版社, 2018.
BIAN B X, ZHAO Y C, QIAO Y Y.Treatment and comprehensive utilization of agricultural solid waste[M]. 2nd edition. Beijing: Chemical Industry Press, 2018.
[15] 李妍, 刘蕾, 柳新伟, 等. 抗生素菌渣有机肥对潮土土壤养分及酶活性的影响[J]. 山东农业科学, 2020, 52(3): 78-83.
LI Y, LIU L, LIU X W, et al.Effects of antibiotic residue organic fertilizer on nutrients and soil enzyme activities of moisture soil[J]. Shandong agricultural sciences, 2020, 52(3): 78-83.
[16] 彭小武, 丁丽, 张琳, 等. 抗生素菌渣有机肥对玉米土壤真菌群落结构和功能类群的影响[J]. 中国资源综合利用, 2020, 38(10): 1-11.
PENG X W, DING L, ZHANG L, et al.The effect of antibiotic residue organic fertilizer on the community structure and functional groups of corn soil fungi[J]. China resources comprehensive utilization, 2020, 38(10): 1-11.
[17] HU Y M, WANG J L, SHEN Y P.Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment[J]. Journal of hazardous materials, 2020, 384: 121335.
[18] 安淼, 袁国安, 夏旻. 废弃物热化学处理方法的多角度对比分析[J]. 环境与可持续发展, 2018, 43(4): 151-154.
AN M, YUAN G A, XIA M.Comparison of thermochiemical technologies for waste treatment[J]. Environment and sustainable development, 2018, 43(4): 151-154.
[19] LI H Q, HU J T, YAO L F, et al.Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar: competitive adsorption and mechanism studies[J]. Journal of hazardous materials, 2020, 390: 122127.
[20] LI C X, ZHANG G Y, ZHANG Z K, et al.Hydrothermal pretreatment for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Chemical engineering journal, 2015, 279: 530-537.
[21] 邹书娟, 王一迪, 张均雅, 等. 抗生素菌渣理化性质分析[J]. 环境科学与技术, 2018, 41(S1): 47-52.
ZOU S J, WANG Y D, ZHANG J Y, et al.Analysis of physical and chemical properties of antibiotic bacterial residue[J]. Environmental science & technology, 2018, 41(S1): 47-52.
[22] 赵文霞, 王克强, 杨朝旭, 等. 庆大霉素菌渣炭的制备及吸附丙酮气体的性能[J]. 环境科学与技术, 2018, 41(4): 34-39.
ZHAO W X, WANG K Q, YANG Z X, et al.Activated carbon prepared from gentamycin bacteria residue and its acetone gas adsorption characteristics[J]. Environmental science & technology, 2018, 41(4): 34-39.
[23] 尤占平, 郝长生, 焦永刚, 等. 两种抗生素菌渣热解及燃烧特性对比研究[J]. 工业安全与环保, 2016, 42(5): 41-43.
YOU Z P, HAO C S, JIAO Y G, et al.Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Industrial safety and environmental protection, 2016, 42(5): 41-43.
[24] MA D C, ZHANG G Y, AREEPRASERT C, et al.Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue[J]. Chemical engineering journal, 2016, 284: 708-715.
[25] RAMASWAMY J, PRASHER S O, PATEL R M, et al.The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource technology, 2010, 101(7): 2294-2299.
[26] 王梦梦, 刘惠玲, 王璞, 等. 林可霉素菌渣理化性质分析[J]. 环境工程, 2014, 32(S1): 279-281.
WANG M M, LIU H L, WANG P, et al.Physicochemical properties analysis of lincomycin bacterial residues[J]. Environmental engineering, 2014, 32(S1): 279-281.
[27] 高嘉岐, 孟昭虹, 杨迪. 泰乐菌素菌渣理化分析[J]. 哈尔滨师范大学自然科学学报, 2018, 34(2): 101-105.
GAO J Q, MENG Z H, YANG D.Physical and chemical analysis of tylosin bacteria[J]. Natural science journal of Harbin Normal University, 2018, 34(2): 101-105.
[28] 李月海, 刘冬玲, 谢幼梅. 抗生素菌渣的综合利用[J]. 山东畜牧兽医, 2000, 21(6): 28-31, 39.
LI Y H, LIU D L, XIE Y M.Comprehensive utilization of antibiotic residue[J]. Shandong journal of animal husbandry and veterinary science, 2000, 21(6): 28-31, 39.
[29] 贡丽鹏, 郭斌, 任爱玲, 等. 抗生素菌渣理化特性[J]. 河北科技大学学报, 2012, 33(2): 190-196.
GONG L P, GUO B, REN A L, et al.Physical and chemical properties of antibiotics bacterial residue[J]. Journal of Hebei University of Science and Technology, 2012, 33(2): 190-196.
[30] 苑丽梅, 王梦梦, 王璞, 等. 头孢菌渣理化性质研究[J]. 哈尔滨商业大学学报(自然科学版), 2015, 31(6): 691-693, 703.
YUAN L M, WANG M M, WANG P, et al.Physical and chemical properties of cephalosporin bacterial residue[J]. Journal of Harbin University of Commerce(natural sciences edition), 2015, 31(6): 691-693, 703.
[31] 陈黎, 孔祥生, 刘秋新, 等. 妥布霉素菌渣的理化性质及危害[J]. 环境科学与技术, 2019, 42(9): 30-35.
CHEN L, KONG X S, LIU Q X, et al.Physical and chemical properties and harm of tobramycin bacterial residues[J]. Environmental science & technology, 2019, 42(9): 30-35.
[32] JI K, KHO Y, PARK C, et al.Influence of water and food consumption on inadvertent antibiotics intake among general population[J]. Environmental research, 2010, 110(7): 641-649.
[33] HAMSCHER G, SCZESNY S, HÖPER H, et al. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Analytical chemistry, 2002, 74(7): 1509-1518.
[34] WANG R, WANG J, WANG J H, et al.Growth inhibiting effects of four antibiotics on cucumber, rape and Chinese cabbage[J]. Bulletin of environmental contamination and toxicology, 2019, 103(1): 187-192.
[35] 刘鹏霄, 王旭, 冯玲. 自然水环境中抗生素的污染现状、来源及危害研究进展[J]. 环境工程, 2020, 38(5): 36-42.
LIU P X, WANG X, FENG L.Occurrences, resources and risk of antibiotics in aquatic environment: a review[J]. Environmental engineering, 2020, 38(5): 36-42.
[36] JIANG L, HU X L, XU T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China[J]. Science of the total environment, 2013, 458-460: 267-272.
[37] ASHBOLT N J, AMEZQUITA A, BACKHAUS T, et al.Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance[J]. Environmental health perspectives, 2013, 121(9): 993-1001.
[38] BEN Y J, FU C X, HU M, et al.Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review[J]. Environmental research, 2019, 169: 483-493.
[39] SHAO J G, YAN R, CHEN H P, et al.Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis[J]. Energy & fuels, 2008, 22(1): 38-45.
[40] ZHANG G Y, LIU H, GE Y X, et al.Gaseous emission and ash characteristics from combustion of high ash content antibiotic mycelial residue in fluidized bed and the impact of additional water vapor[J]. Fuel, 2017, 202: 66-77.
[41] 葛亚昕, 张光义, 崔丽杰, 等. 高含水菌渣流化床燃烧NOx、SO2排放特性[J]. 化工学报, 2017, 68(8): 3250-3257.
GE Y X, ZHANG G Y, CUI L J, et al.Characteristics of NOx and SO2 emission from combustion of antibiotic mycelial residue with high water content in fluidized bed reactor[J]. CIESC journal, 2017, 68(8): 3250-3257.
[42] 黄维, 范同祥. 水热碳化法的研究进展[J]. 材料导报, 2014, 28(S1): 131-135.
HUANG W, FAN T X.Research progress of hydrothermal carbonization method[J]. Materials review, 2014, 28(S1): 131-135.
[43] ZHAO P T, GE S F, MA D C, et al.Effect of hydrothermal pretreatment on convective drying characteristics of paper sludge[J]. ACS sustainable chemistry & engineering, 2014, 2(4): 665-671.
[44] ZHAO P T, SHEN Y F, GE S F, et al.Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization[J]. Energy conversion and management, 2014, 78: 815-821.
[45] PRAWISUDHA P, NAMIOKA T, YOSHIKAWA K.Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment[J]. Applied energy, 2012, 90(1): 298-304.
[46] ZHANG G Y, MA D C, PENG C N, et al.Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chemical engineering journal, 2014, 252: 230-238.
[47] NEYENS E, BAEYENS J, DEWIL R, et al.Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of hazardous materials, 2004, 106(2/3): 83-92.
[48] 陈冠益, 刘环博, 李健, 等. 抗生素菌渣处理技术研究进展[J]. 环境化学, 2021, 40(2): 459-473.
CHEN G Y, LIU H B, LI J, et al.Treatment of antibiotic mycelial fermentation residue: the critical review[J]. Environmental chemistry, 2021, 40(2): 459-473.
[49] ZHANG X, LI X X, LI R, et al.Hydrothermal carbonization and liquefaction of sludge for harmless and resource purposes: a review[J]. Energy & fuels, 2020, 34(11): 13268-13290.
[50] WANG L P, CHANG Y Z, LI A M.Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review[J]. Renewable and sustainable energy reviews, 2019, 108: 423-440.
[51] FUNKE A, ZIEGLER F.Hydrothermal carbonization of biomass:a summary and discussion of chemical mechanisms for process engineering[J]. Biofuels, bioproducts and biorefining, 2010, 4(2): 160-177.
[52] CAI C, HUA Y, LI H P, et al.Hydrothermal treatment of erythromycin fermentation residue: harmless performance and bioresource properties[J]. Resources, conservation and recycling, 2020, 161: 104952.
[53] CHEN X J, LIN Q M, HE R D, et al.Hydrochar production from watermelon peel by hydrothermal carbonization[J]. Bioresource technology, 2017, 241: 236-243.
[54] ZHANG Y, JIANG Q, XIE W L, et al.Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover[J]. Biomass and bioenergy, 2020, 161: 105952.
[55] SU H C, ZHOU X Y, ZHENG R D, et al.Hydrothermal carbonization of food waste after oil extraction pre-treatment: study on hydrochar fuel characteristics, combustion behavior, and removal behavior of sodium and potassium[J]. Science of the total environment, 2021, 754: 142192.
[56] WEI X, HUANG S, WU Y Q, et al.Effects of demineralization and devolatilization on fast pyrolysis behaviors and product characteristics of penicillin mycelial residues[J]. Journal of hazardous materials, 2022, 430: 128359.
[57] PAULINE A L, JOSEPH K.Hydrothermal carbonization of organic wastes to carbonaceous solid fuel-a review of mechanisms and process parameters[J]. Fuel, 2020,279: 118472.
[58] ZHUANG X Z,ZHAN H,SONG Y P,et al.Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC)[J]. Fuel, 2019, 236: 960-974.
[59] SHEN Y F.A review on hydrothermal carbonization of biomass and plastic wastes to energy products[J]. Biomass and bioenergy, 2020, 134: 105479.
[60] ZHANG X, LI X X, LI R, et al.Hydrothermal carbonization and liquefaction of sludge for harmless and resource purposes:a review[J]. Energy & fuels, 2020, 34(11): 13268-13290.
[61] WANG L P,CHANG Y Z,LI A M.Hydrothermal carbonization for energy-efficient processing of sewage sludge:a review[J]. Renewable and sustainable energy reviews, 2019, 108: 423-440.
[62] HE C, GIANNIS A, WANG J Y.Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior[J]. Applied energy, 2013, 111: 257-266.
[63] MERZARI F, LANGONE M, ANDREOTTOLA G, et al.Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization[J]. Critical reviews in environmental science and technology, 2019, 49(11): 947-988.
[64] HUANG R X, ZHANG B, SAAD E M, et al.Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water research, 2018, 132: 260-269.
[65] ZHANG H D, GAO Z P, AO W Y, et al.Microwave pyrolysis of textile dyeing sludge in a continuously operated auger reactor: char characterization and analysis[J]. Journal of hazardous materials, 2017, 334: 112-120.
[66] CHEN T, ZHANG Y X, WANG H T, et al.Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge[J]. Bioresource technology, 2014, 164: 47-54.
[67] ZHU X D, YANG S J, WANG L, et al.Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environmental pollution, 2016, 211: 20-27.
[68] WANG Q J, ZHANG Z, XU G R, et al.Pyrolysis behaviors of antibiotic fermentation residue and wastewater sludge from penicillin production: kinetics, gaseous products distribution, and nitrogen transformation[J]. Journal of analytical and applied pyrolysis, 2021, 158: 105208.
[69] BULUSHEV D A, ROSS J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review[J]. Catalysis today, 2011, 171(1): 1-13.
[70] 秦岩. 青霉素菌渣热解制备热解油和活性炭[D]. 太原:山西大学, 2020.
QIN Y.Preparation of pyrolysis oil and activated carbon by pyrolysis of penicillin slag[D]. Taiyuan: Shanxi University, 2020.
[71] 周保华, 高勤, 郭斌, 等. 碳酸钾化学活化法制备土霉素菌渣活性炭研究[J]. 南京理工大学学报, 2012, 36(6): 1070-1074.
ZHOU B H, GAO Q, GUO B, et al.Preparation of oxytetracycline bacterial residue activated carbon by chemical activation with potassium carbonate[J]. Journal of Nanjing University of Science and Technology, 2012, 36(6): 1070-1074.
[72] 梁燕, 牛建瑞. 土霉素菌渣活性炭吸附处理低浓度含铬废水[J]. 科学技术与工程, 2019, 19(30): 397-404.
LIANG Y, NIU J R.Treatment of low concentration chromium wastewater onto oxytetracycline residue activated carbon[J]. Science technology and engineering, 2019, 19(30): 397-404.
[73] 李复生, 高慧, 耿中峰, 等. 污泥热化学处理研究进展[J]. 安全与环境学报, 2015, 15(2): 239-245.
LI F S, GAO H, GENG Z F, et al.Progress in research of thermochemical treatment of sewage sludge[J]. Journal of safety and environment, 2015, 15(2): 239-245.

基金

宁夏回族自治区重点研发计划(2021BEG02001); 国家重点研发计划(2021YFC2101000); 国家自然科学基金(21878096)

PDF(1757 KB)

Accesses

Citation

Detail

段落导航
相关文章

/