基于互射式三阵元超声波传感器的风矢量测量

刘小松, 解晓冉, 单泽彪, 韩明轩

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 411-417.

PDF(1832 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1832 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 411-417. DOI: 10.19912/j.0254-0096.tynxb.2022-0797

基于互射式三阵元超声波传感器的风矢量测量

  • 刘小松1, 解晓冉1, 单泽彪1~3, 韩明轩1
作者信息 +

WIND VECTOR MEASUREMENT BASED ON THREE MUTUALLYTRANSMITTING ULTRASONIC SENSORS

  • Liu Xiaosong1, Xie Xiaoran1, Shan Zebiao1-3, Han Mingxuan1
Author information +
文章历史 +

摘要

为解决现有的超声波测风仪存在的测量精度不高、受环境温湿度及阴影效应等因素影响较大等问题,提出基于互射式三阵元超声波传感器阵列结构的风矢量测量方法。设计的测风结构由3个收发一体式超声波传感器组成,根据三阵元系统结构特性结合时差法建立风矢量测量模型,消除温湿度及阴影效应对风矢量测量的影响,运用基于相关法的时延估计方法并结合快速傅里叶变换进行传播时间估计,减少算法的计算复杂度。最后,进行模拟仿真实验验证所提算法的有效性,并通过搭建的互射式三阵元超声波测风系统进行实测数据验证。在实测环境下风速测量的相对误差为2.75%、风向测量的误差为2.5°,基本达到测风领域的技术要求。

Abstract

In order to solve the problems existing in the current ultrasonic wind measuring instrument, such as low measurement accuracy, great influence by environment temperature, humidity and shadow effect. A wind vector measurement method is proposed based on an ultrasonic sensor array structure with three mutually transmitting array elements. The wind measuring structure in this paper is composed of three transceiver integrated ultrasonic sensors. Combined with time-difference method, wind vector measurement model is built according to the structural characteristics of three-array-element system for eliminating the influence of environment temperature, humidity and shadow effect on wind vector measurement. Combined with fast Fourier transform, a time delay estimation method based on correlation method is used to estimate the propagation time, and the computational complexity of the algorithm is reduced. At last, simulation experiments are carried out to verify the effectiveness of the proposed algorithm, and the wind measurement system with three mutually transmitting ultrasonic sensors is built for measured data experiments. According to the actual test results, the relative error of wind speed is 2.75% and the measuring error of wind direction is 2.5°, which basically meets the technical requirements in the field of wind measurement.

关键词

风速风向测量 / 超声波测量 / 时延测量 / 相关法 / 互射式三阵元

Key words

anemometry / ultrasonic measurement / time measurement / correlation method / three mutually transmitting ultrasonic sensors

引用本文

导出引用
刘小松, 解晓冉, 单泽彪, 韩明轩. 基于互射式三阵元超声波传感器的风矢量测量[J]. 太阳能学报. 2023, 44(9): 411-417 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0797
Liu Xiaosong, Xie Xiaoran, Shan Zebiao, Han Mingxuan. WIND VECTOR MEASUREMENT BASED ON THREE MUTUALLYTRANSMITTING ULTRASONIC SENSORS[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 411-417 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0797
中图分类号: TH765   

参考文献

[1] 张家安, 刘东, 刘辉, 等. 基于风速波动特征提取的超短期风速预测[J]. 太阳能学报, 2022, 43(9): 308-313.
ZHANG J A, LIU D, LIU H, et al.Ultra short term wind speed prediction based on wind speed fluctuation feature extraction[J]. Acta energiae solaris sinica, 2022, 43(9): 308-313.
[2] 周凌, 赵前程, 石照耀, 等. 风电场风电机组机载风速仪状态自确认[J]. 太阳能学报, 2022, 43(11): 172-178.
ZHOU L, ZHAO Q C, SHI Z Y, et al.Self-confirmation of onboard anemometer status of wind turbines in wind farms[J]. Acta energiae solaris sinica, 2022, 43(11): 172-178.
[3] CHEN X, ZHAN W.Effect of transducer shadowing of ultrasonic anemometers on wind velocity measurement[J]. IEEE sensors journal, 2021, 21(4): 4731-4738.
[4] ZHAO C, CHEN Z Z, LI J, et al.Wind direction estimation using small-aperture HF radar based on a circular array[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(4): 2745-2754.
[5] MA B, TENG J, ZHU H, et al.Three-dimensional wind measurement based on ultrasonic sensor array and multiple signal classification[J]. Sensors, 2020, 20(2): 1-16.
[6] SHAN Z B, XIE X R, LIU X S.Wind speed and direction measurement based on three mutually transmitting ultrasonic sensors[J], IEEE geoscience and remote sensing letters. 2023, 20: 1-5.
[7] 李琦, 魏永星, 刘颉, 等. 基于时差法超声测风系统的声场分析与研究[J]. 海洋技术学报, 2016, 35(1): 68-73.
LI Q, WEI Y X, LIU J, et al.Analysis and research on the acoustic field of the ultrasonic wind measurement system based on the time difference method[J]. Journal of ocean technology, 2016, 35(1): 68-73.
[8] 张敏. 高分辨率时间间隔测量技术研究[D]. 西安: 西安电子科技大学, 2017.
ZHANG M.Research on high-resolution time interval measurement technology[D]. Xi’an: Xidian University, 2017.
[9] 葛健炎, 丁煜. 基于STM32和FPGA的超声波气体流量计[J]. 仪表技术与传感器, 2020(10): 29-32.
GE J Y, DING Y.Ultrasonic gas flow meter based on STM32 and FPGA[J]. Instrument technique and sensor, 2020(10): 29-32.
[10] 单泽彪, 韩明轩, 于渤力, 等. 基于相位翻转的超声波风速风向测量[J]. 振动与冲击, 2023, 42(9): 230-235.
SHAN Z B, HAN M X, YU B L, et al.Wind speed and direction measurement based on ultrasonic phase reversal[J]. Journal of vibration and shock, 2023, 42(9): 230-235.
[11] 单泽彪, 刘小松, 鲁胜麟, 等. 基于双阵元超声波接收阵列的风矢量测量[J]. 仪器仪表学报, 2021, 42(2): 228-234.
SHAN Z B, LIU X S, LU S L, et al.Wind vector measurement using dual sensors ultrasonic receiving array[J]. Chinese journal of scientific instrument, 2021, 42(2): 228-234.
[12] ZHANG Y, GAO R G.Design of the new ultrasonic wind speed and direction sensor[J]. Journal of computational methods in sciences and engineering, 2019, 19(S1): 139-147.
[13] 胡曼青, 刘小河, 张伟. 三维超声波风速测量仪主控电路系统设计与实现[J]. 中国测试, 2020(3): 100-105.
HU M Q, LIU X H, ZHANG W.Design and realization of main control circuit system for three-dimensional ultrasound wind velocity measuring instrument[J]. China measurement & test, 2020(3): 100-105.
[14] 单泽彪, 鲁胜麟, 刘小松, 等. 基于高阶累积量的阵列式超声波传感器风速风向测量[J]. 仪器仪表学报, 2021, 42(6): 279-286.
SHAN Z B, LU S L, LIU X S, et al.Wind speed and direction measurement with array ultrasonic sensors based on high-order cumulant[J]. Chinese journal of scientific instrument, 2021, 42(6): 279-286.
[15] DING X B, LIANG J Y, JIAN L, et al.Measurement algorithm of two-dimensional wind vector using ultrasonic transducers[J]. Telkomnika Indonesian journal of electrical engineering, 2012, 11(1): 517-524.

基金

吉林省自然科学基金(YDZJ202301ZYTS412)

PDF(1832 KB)

Accesses

Citation

Detail

段落导航
相关文章

/