研究分布式电池储能系统的优化控制方法以及电池荷电状态(SOC)均衡策略,提出基于SOC均衡的协同控制策略。利用多智能体系统(MAS)理论,实现电池储能系统的协同控制,并采用多智能体分布式算法,实现功率指令的自适应分配,进而实现SOC动态均衡。针对传统多智能体算法收敛速度较慢的问题,提出一种基于模型预测控制(MPC)的分布式算法,利用MPC对传统多智能体算法进行优化,提高收敛速度。最后利用实际储能功率数据进行仿真,验证了所提策略的有效性和算法在收敛速度上的优势。
Abstract
This paper researches the optimal control method and SOC balance strategy of distributed battery energy storage system, and proposes a cooperative control strategy based on SOC balance. The multi-agent system (MAS) theory was used to realize the cooperative control of battery energy storage system, and the multi-agent distributed algorithm was used to realize the adaptive allocation of power instructions,and then realized SOC dynamic equalization. Aiming at the slow convergence of traditional multi-agent algorithm,a distributed algorithm based on model predictive control (MPC) was proposed. MPC was used to optimize the traditional multi-agent algorithm and improve the convergence speed. Finally, the effectiveness of the proposed strategy and the advantages of the algorithm in convergence speed are verified by simulation with the actual energy storage power data.
关键词
电池储能系统 /
模型预测控制 /
分布式算法 /
协同控制 /
荷电状态
Key words
energy storage system /
model predictive control /
distributed algorithm /
co-control /
state of charge (SOC)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李建林, 马会萌, 惠东. 储能技术融合分布式可再生能源的现状及发展趋势[J]. 电工技术学报, 2016, 31(14): 1-10.
LI J L, MA H M, HUI D.Present development condition and trends of energy storage technology in the integration of distributed renewable energy[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 1-10.
[2] 田崇翼, 李珂, 严毅, 等. 基于经验模式分解的风电场多时间尺度复合储能控制策略[J]. 电网技术, 2015, 39(8): 2167-2172.
TIAN C Y, LI K, YAN Y, et al.A multi-time scale control strategy of hybrid energy storage system in wind farm based on empirical mode decomposition[J]. Power system technology, 2015, 39(8): 2167-2172.
[3] 张福民, 白松, 李占凯, 等. 基于VSG技术的微电网储能荷电状态控制策略[J]. 电网技术, 2019, 43(6): 2109-2116.
ZHANG F M, BAI S, LI Z K, et al.Control strategy for microgrid storage system’s state of charge based on virtual synchronous generator[J]. Power system technology, 2019, 43(6): 2109-2116.
[4] 柴秀慧, 张纯江, 柴建国, 等. 分布式储能变调节因子SOC下垂控制及功率调节[J]. 太阳能学报, 2021, 42(9): 477-482.
CHAI X H, ZHANG C J, CHAI J G, et al.Variable adjustment factor soc droop control and power regulation in distributed energy storage[J]. Acta energiae solaris sinica, 2021, 42(9): 477-482.
[5] 王枭, 何怡刚, 马恒瑞, 等. 考虑规模化储能的配电网电压分布式控制[J]. 电力自动化设备, 2022, 42(2): 25-30, 55.
WANG X, HE Y G, MA H R, et al.Distributed voltage control of distribution network considering large-scale energy storage[J]. Electric power automation equipmen, 2022, 42(2): 25-30, 55.
[6] DAOWD M, OMAR N, VAN DEN BOSSCHE P, et al.Passive and active battery balancing comparison based on MATLAB simulation[C]//2011 IEEE Vehicle Power and Propulsion Conference (VPPC). Chicago, IL, USA, 2011: 1-7.
[7] 刘征宇, 夏登威, 姚利阳, 等. 基于耦合绕组的锂电池组主动均衡方案研究[J]. 电机与控制学报, 2021, 25(2): 54-64.
LIU Z Y, XIA D W, YAO L Y, et al.Research on active balancing scheme of lithium battery pack based on coupled winding[J]. Electric machines and control, 2021, 25(2): 54-64.
[8] 李鹏程, 张纯江, 袁然然, 等. 改进SOC下垂控制的分布式储能系统负荷电流分配方法[J]. 中国电机工程学报, 2017, 37(13): 3746-3754.
LI P C, ZHANG C J, YUAN R R, et al.Load current sharing method of distributed energy storage systems by improved soc drooping control[J]. Proceedings of the CSEE, 2017, 37(13): 3746-3754.
[9] HOANG K D, LEE H H.Accurate power sharing with balanced battery state of charge in distributed DC microgrid[J]. IEEE transactions on industrial electronics, 2019, 66(3): 1883-1893.
[10] 张新松, 顾菊平, 袁越, 等. 基于电池储能系统的风功率波动平抑策略[J]. 中国电机工程学报, 2014, 34(28): 4752-4760.
ZHANG X S, GU J P, YUAN Y, et al.Strategy of smoothing wind power fluctuation based on battery energy storage system[J]. Proceedings of the CSEE, 2014, 34(28): 4752-4760.
[11] BAPAT R B.Graphs and matrices[M]. London: Springer Press, 2014.
[12] SABER R O, FAX J A, MURRAY R M.Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1): 215-233.
[13] 黄鹏超, 鄂加强. 基于双自适应卡尔曼滤波的锂电池状态估算[J]. 储能科学与技术, 2022, 11(2): 660-666.
HUANG P C, E J Q. State estimation of lithium-ion battery based on dual adaptive Kalman filter[J]. Energy storage science and technology, 2022, 11(2): 660-666.
[14] 严干贵, 朱星旭, 李军徽, 等. 内蕴运行寿命测算的混合储能系统控制策略设计[J]. 电力系统自动化, 2013, 37(1): 110-114.
YAN G G, ZHU X X, LI J H, et al.Control strategy design for hybrid energy storage system with intrinsic operation life measurement and calculation[J]. Automation of electric power systems, 2013, 37(1): 110-114.
[15] DROUILHET S, JOHNSON B L.A battery life prediction method for hybrid power applications[R]. Golden:U.S. Department of Energy, 1997.
基金
新疆维吾尔自治区自然科学基金(2021D01C044); 国家自然科学基金(51667018)