基于储能的大型风电机组极限载荷研究

张林伟, 蔡安民, 林伟荣, 陈浩, 李力森

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 418-423.

PDF(2185 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2185 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 418-423. DOI: 10.19912/j.0254-0096.tynxb.2022-0800

基于储能的大型风电机组极限载荷研究

  • 张林伟1, 蔡安民1, 林伟荣1, 陈浩2, 李力森1
作者信息 +

EXTREME LOAD ANALYSIS OF LARGE-SCALE WIND TURBINE BASE ON ENERGY STORAGE

  • Zhang Linwei1, Cai Anmin1, Lin Weirong1, Chen Hao2, Li Lisen1
Author information +
文章历史 +

摘要

基于修正的叶素动量理论,考虑叶尖/叶根损失修正、动态失速、动态入流、叶片截面扭转等影响,通过叶片与塔筒耦合结构动力学响应分析,以某4 MW机组为例,对极端工况下的大型风电机组极限载荷进行研究。结果表明,在极端阵风耦合脱网故障时,通过增加旁路负载或储能系统调节负载转矩,有助于抑制机组由于负载消失产生的明显结构变形和降低极限载荷。

Abstract

The extreme load analysis research in a case of 4 MW large-scale wind turbine on extreme conditions is carried out by method of dynamic response coupling blade and tower, based on improved BEM theory in consideration of influence of tip/hub loss correction, dynamic stall, dynamic inflow and blade section torque. The results show that adoption of bypass loads or energy storage system for adjusting torque helps to decrease the extreme loads and inhibit structure displacement of wind turbine due to load disappear.

关键词

风电机组 / 储能 / 耦合分析 / 极端工况 / 储能系统 / 极限载荷

Key words

wind turbines / energy storage / coupling analysis / extreme load case / energy storage system / extreme load

引用本文

导出引用
张林伟, 蔡安民, 林伟荣, 陈浩, 李力森. 基于储能的大型风电机组极限载荷研究[J]. 太阳能学报. 2023, 44(9): 418-423 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0800
Zhang Linwei, Cai Anmin, Lin Weirong, Chen Hao, Li Lisen. EXTREME LOAD ANALYSIS OF LARGE-SCALE WIND TURBINE BASE ON ENERGY STORAGE[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 418-423 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0800
中图分类号: TK8   

参考文献

[1] SCOTT K,INFIELD D, BARLTROP N, et al.Effects of extreme and transient loads on wind turbine drive trains[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, TN, US, 2012.
[2] BASHETTY S,GUILLAMON J I, MUTNURI S S.Design of a robust adaptive controller for the pitch and torque control of wind turbines[J]. Energies, 2020, 13(5): 1-21.
[3] HUNG D M, NJIRI J G, SÖFFKER D. Structural load mitigation control for wind turbines: a new performance measure[J]. Wind energy, 2020, 23(4): 1085-1098.
[4] 罗振. 水平轴风力机风轮和塔架的耦合动力学分析[D].汕头: 汕头大学, 2011.
LUO Z.The coupling dynamics analysis of rotor and tower of horizontal axis wind turbine[D]. Shantou: Shantou University, 2011.
[5] 杨玉新, 刘观起, 杜宝星. 直驱风电机组的低电压穿越保护方案综述[J]. 电工电气, 2012(6): 1-4.
YANG Y X, LIU G Q, DU B X.Overview of low-voltage ride-through protection plan for direct-drive wind turbine[J]. Electrotechnics electric, 2012(6): 1-4.
[6] IEC61400-1 Edition4.02019-02, Wind energy generation systems-Part 1:Design requirements[S].
[7] BURTON T, JENKINS N, SHARPE D, et al.Wind energy handbook[M]. Second edition. New York: John Wiley & Sons, Ltd. , 2011.
[8] HANSEN M O L,SORENSEN J N,VOUTSINSA S,et al. State of the art in wind turbine aerodynamics and aeroelasticity[J]. Progress in aerospace sciences, 2006, 42(4): 285-330.
[9] 张林伟, 梁湿, 杨峰, 等. 极端阵风条件下大型风力机叶片极限载荷研究[J]. 太阳能学报, 2016, 37(6): 1573-1578.
ZHANG L W, LIANG S,YANG F, et al.Extreme load analysis of large scale wind turbine blade under extreme gust condition[J]. Acta energiae solaris sinica, 2016, 37(6): 1573-1578.
[10] 陈严, 张林伟, 刘雄, 等. 水平轴风力机柔性叶片气动弹性响应分析[J]. 太阳能学报, 2014, 35(1): 74-82.
CHEN Y, ZHANG L W, LIU X, et al.Response analysis of aeroelasticity for hawt flexible blade[J]. Acta energiae solaris sinica, 2014, 35(1): 74-82.
[11] 张雄, 王天舒. 计算动力学[M]. 北京: 清华大学出版社, 2007.
ZHANG X, WANG T S.Computational dynamics[M]. Beijing: Tsinghua University Publishing House, 2007.
[12] Garrad Hassan & Partners Ltd. Bladed theory manual Version 4.10 [EB/OL]. www.dnvgl.com/software, 2020.
[13] 张林伟,一种基于储能风电机组极限载荷控制方法、介质和设备:中国,202110560496.8[P]. 2022.05.20.
ZHANG L W.A extreme load control method, medium and equipment of wind turbine based on energy storage system. China, 202110560496.8[P]. 2022.05.20

基金

中国华能集团科技项目(HNKJ21-HF281; HNKJ21-H02)

PDF(2185 KB)

Accesses

Citation

Detail

段落导航
相关文章

/