采用欧拉-拉格朗日法对生物质颗粒群在提升管内流动与分布特性方面展开研究。根据生物质颗粒结构特征建立链状可弯曲三维颗粒模型,考察表观气速(5.71、6.89、7.58、9.10 m/s)、颗粒质量流量(0.018、0.0216、0.0259、0.0311 kg/s)对丝状颗粒在提升管内轴向和径向分布特性的影响。研究发现:丝状颗粒在提升管轴向呈下密上疏的分布规律,在径向上随高度的增加颗粒分布由不均匀的倒C形分布向ω形转变。随着表观气速的增加,颗粒体积分数沿提升管径向逐渐降低。当表观气速ug=9.10 m/s时,颗粒处于快速流化状态,气固间相互作用增强、混合良好,沿提升管轴向分布更均匀。当颗粒质量流量增加,丝状颗粒聚集区域向上延伸,颗粒体积分数沿径向升高,且各水平截面的分布特征沿轴向差别不大。
Abstract
Euler-Lagrange method is adopted to study the flow and distribution characteristics of the filamentous biomass particles in the fluidized riser. According to the structural characteristics of filamentous biomass particles, a chain bendable three-dimensional particle model is established, and the effects of superficial gas velocity (5.71, 6.89, 7.85 and 9.10 m/s),particles mass flow (0.018, 0.0216, 0.0259, 0.0311 kg/s) on the axial and radial distribution characteristics of particles were investigated. The results indicate that the filamentous biomass particles exhibit a distribution law of dense lower and upper sparse in the axial direction of the riser, and the particle distribution changes from a non-uniform inverted C-shaped to an ω distribution with the increasing height in the radial direction. When the superficial gas velocity ug=9.10m/s, the filamentous biomass particles stay in a fast fluidization state. The interaction between the gas and solid is enhanced, and well mixed. Additionally, the filamentous biomass particles are evenly distributed along the axial direction of the fluidized riser. With the increase of the mass flow rate of particles, the aggregated area of filamentous biomass particles extends upward. The volume fraction of particles increases along the radial direction as well, and the distribution characteristics of each horizontal cross-sections have slight difference along the axial direction.
关键词
生物质 /
计算流体力学 /
流化床 /
气固两相流 /
丝状颗粒
Key words
biomass /
computational fluid dynamics /
fluidized beds /
gas solid two-phase flow /
filamentous particles
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 董静兰, 马凯. 富氧气氛下煤与生物质掺烧时污染物排放特性[J]. 太阳能学报, 2018, 39(3): 829-836.
DONG J L, MA K.Pollutant emission characteristics of coal combustion blending with biomass in oxygen-enriched atmosphere[J]. Acta energiae solaris sinica, 2018, 39(3): 829-836.
[2] 石元春. 我国生物质能源发展综述[J]. 智慧电力, 2017, 45(7): 1-5, 92.
SHI Y C.Overview of biomass energy development in China[J]. Smart power, 2017, 45(7): 1-5.
[3] AMJITH L R, BAVANISH B.A review on biomass and wind as renewable energy for sustainable environment[J]. Chemosphere, 2022, 293: 133579.
[4] MORENO R M, ANTOLÍN G, REYES A E. Mass transfer during forest biomass particles drying in a fluidised bed[J]. Biosystems engineering, 2020, 198: 163-171.
[5] 曾佳, 黄婷, 俸灵林, 等. 流化床制粒数值模拟技术研究进展[J]. 中国新药杂志, 2019, 28(11): 1330-1342.
ZENG J, HUANG T, FENG L L, et al.Progress in numerical simulation technology for fluidized bed granulation[J]. Chinese journal of new drugs, 2019, 28(11): 1330-1342.
[6] 江威, 杨学良, 秦国鑫, 等. 滚筒烘丝的放大试验研究[J]. 食品工业, 2015, 36(4): 43-47.
JIANG W, YANG X L, QIN G X, et al.Study on scale-up experiment of cylinder dryer[J]. The food industry, 2015, 36(4): 43-47.
[7] 丛宏斌, 赵立欣, 孟海波, 等. 农作物秸秆多级协同干燥系统设计与试验[J]. 太阳能学报, 2018, 39(1): 163-169.
CONG H B, ZHAO L X, MENG H B, et al.Design and test of multilevel collaborative drying system for crop straws[J]. Acta energiae solaris sinica, 2018, 39(1): 163-169.
[8] 赵佳成, 高辉, 王慧, 等. 滚筒干燥过程中不同切丝宽度烟丝挥发性有机酸的变化[J]. 食品工业科技, 2016, 37(24): 144-148, 152.
ZHAO J C, GAO H, WANG H, et al.Change of volatile organic acids of tobacco of cut different cutting width in drying process[J]. Science and technology of food industry, 2016, 37(24): 144-148, 152.
[9] 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314.
FANG H F, LIU Y Y, ZHANG W B.Biomass moisture content prediction in fluidized bed dryer based on LSTM neural network[J]. CIESC journal, 2020, 71(S1): 307-314.
[10] REZAEI H, SOKHANSANJ S, LIM C J.Minimum fluidization velocity of ground chip and ground pellet particles of woody biomass[J]. Chemical engineering and processing-process intensification, 2018, 124(2): 222-234.
[11] 陈然, 张大波, 卓浩廉, 等. 提升管中烟丝运动速度的定量检测及其运动特性分析[J]. 烟草科技, 2021, 54(8): 71-79.
CHEN R, ZHANG D B, ZHUO H L, et al.Quantitative detection of cut tobacco velocity in upright pipe and analysis of its motion characteristics[J]. Tobacco science & technology, 2021, 54(8): 71-79.
[12] ALOBAID F, ALMOHAMMED N, FARID M M, et al.Progress in CFD simulations of fluidized beds for chemical and energy process engineering[J]. Progress in energy and combustion science, 2022, 91: 100930.
[13] 张锴, BRANDANI S.流化床内颗粒流体两相流的CFD模拟[J]. 化工学报, 2010, 61(9): 2192-2207.
ZHANG K, BRANDANI S.CFD simulation of particle-fluid two-phase flow in fluidized beds[J]. CIESC journal, 2010, 61(9): 2192-2207.
[14] 马华庆, 赵永志. 喷动流化床中杆状颗粒混合特性的CFD-DEM模拟[J]. 浙江大学学报(工学版), 2020, 54(7): 1347-1354.
MA H Q, ZHAO Y Z.CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed[J]. Journal of Zhejiang University(engineering science), 2020, 54(7): 1347-1354.
[15] WANG S, SHEN Y S.Super-quadric CFD-DEM simulation of chip-like particles flow in a fluidized bed[J]. Chemical engineering science, 2022, 251: 117431.
[16] WU K, ZHANG E Q, YUAN Z L, et al.Analysis of flexible ribbon particle residence time distribution in a fluidised bed riser using three-dimensional CFD-DEM simulation[J]. Powder technology, 2020, 369(2): 184-201.
[17] WU K, ZHANG E Q, XU J, et al.Three-dimensional simulation of gas-solid flow in a fluidised bed with flexible ribbon particles[J]. International journal of multiphase flow, 2020, 124: 103181.
基金
国家自然科学基金青年项目(51906092)