以餐厨垃圾为原料,研究不同湿热预处理除油条件(温度和处理时间),并将其作为厌氧消化底物进行产沼气潜力测试。研究表明,餐厨垃圾的最佳预处理条件为95 ℃,处理时间90 min,可浮油含量可提升至4.22 %;随着温度的升高,浮油去除率逐步提升至2.21%。餐厨垃圾经95 ℃湿热预处理后,厌氧消化沼气产率达413 mL/g VS。厌氧消化系统中pH值的稳定性较好,保持在6.5~7.5之间,挥发性脂肪酸转化率可达74.31%,处理效果优于其他两个预处理组;挥发性固体(VS)去除率与出料总固体(TS)受温度影响较大,95 ℃时VS去除率可达56.2%,与未处理组相比提高8.1%。
Abstract
In this work, the conditions (temperature and treatment time) of different wet heat pretreatment for oil removal are investigated using food waste as raw material and tested for biogas production potential as anaerobic digestion substrate. The results show that the optimal wet-based thermal oil removal pretreatment condition is 95 ℃, the treatment time is 90 min, the floating oil content of food waste is 4.22%, and the oil removal rate is 2.21%. The biogas yield of food waste anaerobic digestion after 95 ℃ wet-based thermal pretreatment is the largest, reaching 413 mL/g VS. The pH of the biogas slurry is kept at 6.5-7.5, and the conversion rate of volatile fatty acids reaches 74.31%, which is better than the other two pretreatment groups. The VS and TS removal rate of the effluent increased with the increase of treatment temperature. Under the condition of 95 ℃ pretreatment, the VS removal rate reaches 56.2%, which is 8.1% higher than that of the non-pretreatment.
关键词
沼气 /
餐厨垃圾 /
湿热除油 /
厌氧消化
Key words
biogas /
food waste /
wet-based thermal treatment /
anaerobic digestion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TIONG J S M, CHAN Y J, LIM J W, et al. Simulation and optimization of anaerobic co-digestion of food waste with palm oil mill effluent for biogas production[J]. Sustainability, 2021, 13(24): 13665.
[2] PEREIRA M A, SOUSA D Z, MOTA M, et al.Mineralization of LCFA associated with anaerobic sludge: kinetics, enhancement of methanogenic activity, and effect of VFA[J]. Biotechnology and bioengineering, 2004, 88(4): 502-511.
[3] 周洪波, 陈坚, 赵由才, 等. 长链脂肪酸对厌氧颗粒污泥产甲烷毒性研究[J]. 水处理技术, 2002, 28(2): 93-97.
ZHOU H B, CHEN J, ZHAO Y C, et al.Methanogenic activity of anaerobic granular sludge by long-chain fatty acids[J]. Technology of water treatment, 2002, 28(2): 93-97.
[4] GIORDANI A, BRUCHA G, SANTOS K A, et al. Performance and microbial community analysis in an anaerobic hybrid baffled reactor treating dairy wastewater[J]. Water, air, & soil pollution, 2021, 232(10): 403.1-403.16.
[5] 王暾. 油脂和盐分对餐厨垃圾单级厌氧消化影响的试验研究[D]. 重庆: 重庆大学, 2008.
WANG T.Study on effects of grease and salt in single-stage anaerobic digestion of food waste[D]. Chongqing: Chongqing University, 2008.
[6] 张燕杰. 餐厨垃圾厌氧发酵产沼及脱碳工艺研究[D]. 南宁: 广西大学, 2019.
ZHANG Y J.Study on anaerobic fermentation of kitchen waste for biogas production and decarbonization[D]. Nanning: Guangxi University, 2019.
[7] 任连海, 聂永丰, 刘建国, 等. 湿热处理参数对餐厨垃圾脱水和脱油性能的影响[J]. 环境科学, 2006, 27(9): 1906-1911.
REN L H, NIE Y F, LIU J G, et al.Impact of hydrothermal process on the dewaterability and degrease performance of restaurant garbage[J]. Environmental science, 2006, 27(9): 1906-1911.
[8] 陈丽琴. 餐厨垃圾和草坪草共混发酵制备沼气技术研究[D]. 广州: 华南农业大学, 2016.
CHEN L Q.Study on single substrate of food waste anaerobic degestion and co-degestion with lawn grass[D]. Guangzhou: South China Agricultural University, 2016.
[9] 苏毅. 生物质废物厌氧消化特性及产气潜势研究[D]. 重庆: 重庆大学, 2017.
SU Y.Study on the performance and potential of biogass production in anaerobic digestion of biomass waste[D]. Chongqing: Chongqing University, 2017.
[10] ISKANDER S M, AMHA Y M, WANG P, et al.Investigation of fats, oils, and grease co-digestion with food waste in anaerobic membrane bioreactors and the associated microbial community using MinION sequencing[J]. Frontiers in bioengineering and biotechnology, 2021, 9: 613626.
[11] 许之扬, 赵明星, 阮文权, 等. VFA抑制餐厨垃圾厌氧消化过程及代谢途径的研究[C]//中国沼气学会学术年会. 上海, 中国, 2012.
XU Z Y, ZHAO M X, YUAN W Q, et al.Study on the VFA inhibition of the anaerobic digestion process and metabolic pathways using kitchen waste[C]//Annual Academic Meeting of China Biogas Society. Shanghai, China, 2012.
基金
国家重点研发计划(2021YFC2101605); 广东省重点领域研发计划(2019B110209003)