兼具防波与发电的集成系统能量特性试验研究

林楚森, 周斌珍, 张恒铭, 陈文添, 郭金伶, 陈秀菁

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 467-472.

PDF(1697 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1697 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 467-472. DOI: 10.19912/j.0254-0096.tynxb.2022-0808

兼具防波与发电的集成系统能量特性试验研究

  • 林楚森1, 周斌珍1, 张恒铭2, 陈文添1, 郭金伶1, 陈秀菁1
作者信息 +

EXPERIMENTAL STUDY ON ENERGY CHARACTERISTICS OF INTEGRATED SYSTEM WITH BOTH WAVE ATTENUATION AND POWER

  • Lin Chusen1, Zhou Binzhen1, Zhang Hengming2, Chen Wentian1, Guo Jinling1, Chen Xiujing1
Author information +
文章历史 +

摘要

基于模型试验法,研究PTO阻尼力、浮子底部形状对波能装置-浮式防波堤集成系统发电与防波性能的影响,并将单浮体型集成系统与双浮体型混合系统进行对比,分析防波堤对波能浮子发电性能的影响。结果表明:三角加挡板形浮子的发电与防波性能均优于方箱形和三角形浮子;相比于单浮体型集成系统,双浮体型混合系统的发电与防波性能显著提高,但当发生窄缝共振时,具有三角加挡板形浮子的双浮体型混合系统的发电性能显著降低。

Abstract

Based on the model test method, the influence of the power take-off PTO damping force and the bottom shape of the wave energy converter WEC on the power extraction and wave attenuation performance of the WEC-floating breakwater hybrid system is researched. The performance of the single-body WEC-breakwater integrated system is compared with those of the dual-body hybrid system to analyze the influence of the breakwater on the wave energy extraction performance of the WEC. Results show that the triangle-baffle-shaped bottom has superior power performance compared with rectangular and triangle bottoms. Compared with the single-body integrated system, the power generation and wave attenuation performance of the dual-body system improves compared with the single-body integrated system are significantly improved. However, while narrow-gap resonance occurs, the power generation performance of the dual-body integrated system with the triangle-baffle decreases significanty.

关键词

波浪能转换 / 浮式防波堤 / 转换效率 / 防波性能 / 模型试验

Key words

wave energy conversion / floating breakwater / conversion efficiency / wave attenuation / model experiment

引用本文

导出引用
林楚森, 周斌珍, 张恒铭, 陈文添, 郭金伶, 陈秀菁. 兼具防波与发电的集成系统能量特性试验研究[J]. 太阳能学报. 2023, 44(10): 467-472 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0808
Lin Chusen, Zhou Binzhen, Zhang Hengming, Chen Wentian, Guo Jinling, Chen Xiujing. EXPERIMENTAL STUDY ON ENERGY CHARACTERISTICS OF INTEGRATED SYSTEM WITH BOTH WAVE ATTENUATION AND POWER[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 467-472 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0808
中图分类号: P743.2   

参考文献

[1] ZHAO X L, NING D Z, ZOU Q P, et al.Hybrid floating breakwater-WEC system: a review[J]. Ocean engineering, 2019, 186: 106126.
[2] ANTONIO F O, FALCAO. Wave energy utilization: a review of the technologies[J]. Renewable sustainable energy reviews, 2010, 14(3): 899-918.
[3] NING D Z, ZHAO X L.Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: an experimental study[J]. Renewable energy, 2016, 95: 531-541.
[4] ZHAO X L, NING D Z, ZHANG C W, et al.Hydrodynamic investigation of an oscillating buoy wave energy converter integrated into a pile-restrained floating breakwater[J]. Energies, 2017, 10(5): 712.
[5] CHEN Q, ZANG J, BIRCHALL J, On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater[J]. Renewable energy, 2018, 146: 414-425.
[6] MADHI F, SINCLAIR M E, YEUNG R W.The berkeley wedge: an asymmetrical energy-capturing floating breakwater of high performance[J]. Marine systems & ocean technology, 2014, 9(1): 5-16.
[7] ZHANG H M, ZHOU B Z, VOGEL C, et al.Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter[J]. Applied energy, 2020, 257: 113996.
[8] NING D Z, ZHAO X L, ZHAO M, et al.Analytical investigation of hydrodynamic performance of a dual pontoon WEC-type breakwater[J]. Applied ocean research, 2017, 65: 102-111.
[9] ZHAO X L, NING D Z.Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155: 226-233.
[10] ZHANG H M, ZHOU B Z, VOGEL C, et al.Hydrodynamic performance of a dual-floater hybrid system combining a floating breakwater and an oscillating-buoy type wave energy converter[J]. Applied energy, 2020, 259: 114212.
[11] 杨强, 孔祥训. 100 kW鸭式波浪能发电装置的建造要点[J]. 船海工程, 2013, 42(5): 112-114.
YANG Q, KONG X X.Building cruces of 100 kW canard ocean wave-energy dynamotor[J]. Ship & ocean engineering, 2013, 42(5): 112-114.
[12] 盛松伟, 张亚群, 王坤林, 等. 鹰式波浪能发电装置发电系统研究[J]. 可再生能源, 2015, 33(9): 1422-1426.
SHENG S W, ZHANG Y Q, WANG K L, et al.Experiment research on the power generation system of the sharp eagle wave energy converter[J]. Renewable energy resources, 2015, 33(9): 1422-1426.
[13] 邱守强. 摆式波能转换装置研究[D]. 广州: 华南理工大学, 2013.
QIU S Q.Study on the pendulum wave energy converter[D]. Guangzhou: South China University of Technology, 2013.
[14] 刘常海. 两节筏式波浪能转换装置俘获性能及其液压俘能系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
LIU C H.Research on the power capture ability of the two-raft-type wave energy converter and its hydraulic power take-off system[D]. Harbin: Harbin Institute of Technology University, 2018.
[15] 孙士艳. 非线性规则波中波能转换装置的水动力特征与能量转化效率研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
SUN S Y.The research on hydrodynamic characteristics and energy conversion efficiency of a wave energyconverter in nonlinear regular waves[D]. Harbin: Harbin Engineering University, 2016.
[16] LEE H, POGULURI S K, BAE Y H.Performance analysis of multiplewave energy converters placed on a floating platform in the frequency domain[J]. Energies, 2018, 11: 406.

基金

国家自然科学基金(52071096); 广东省基础自然科学基金杰出青年项目(2022B1515020036); 国家自然科学基金优秀青年基金项目(52222109); 中央高校基本科研业务费专项资金(2022ZYGXR014)

PDF(1697 KB)

Accesses

Citation

Detail

段落导航
相关文章

/