黄土地基中能量桩热力学特性及承载变形性状模型试验研究

曹卫平, 李庆, 李清源

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 539-546.

PDF(2117 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2117 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 539-546. DOI: 10.19912/j.0254-0096.tynxb.2022-0812

黄土地基中能量桩热力学特性及承载变形性状模型试验研究

  • 曹卫平, 李庆, 李清源
作者信息 +

MODEL TEST ON THERMO-MECHANICAL CHARACTERISTICS AND BEARING DEFORMATION BEHAVIOR OF ENERGY PILE INLOESS FOUNDATION

  • Cao Weiping, Li Qing, Li Qingyuan
Author information +
文章历史 +

摘要

能量桩通过内置循环管与周围土体进行热交换来开采浅层地热能。通过室内模型试验,测试4个完整的冷热循环过程中能量桩仅受温度作用及热-力耦合两种工况下的桩身和桩侧土体温度、桩顶和桩侧土表面沉降、桩顶荷载及桩身内力,分析黄土地基中埋设单U形换热管的能量桩热力学及承载变形特性。试验结果表明,对于每个冷热循环过程,随循环时间增加能量桩热交换效率逐渐降低并趋于稳定状态,黄土地基中能量桩桩身温度随深度增加逐渐减小。冷热循环会使能量桩桩顶产生累积沉降,与仅受温度作用工况相比,在热-力耦合作用下能量桩桩顶累积沉降较大,桩侧土表面沉降较小,而桩侧土体受影响范围则较大。对于两种工况,冷热循环稳定后能量桩最大附加应力均出现在桩身中部,热循环时桩身上部摩阻力为负,下部摩阻力为正,冷循环时则相反。

Abstract

Energy piles utilize shallow geothermal energy by exchanging heat with surrounding soils through built-in circulating pipe. Model tests were conducted to investigate the behavior of energy pile embedded in loess soils during 4 entire heating-cooling cycles under two conditions, i.e., the energy pile only experienced heating-cooling cycles and the energy pile experienced loading throughout the heating-cooling cycles. The variation of the temperature of the pile and surrounding soils, the settlement of the soil surface and the pile as well as the pile head load and its internal force were recorded. Furthermore, the load-bearing deformation characteristics and thermo-mechanical characteristics of energy pile with single U-shaped heat exchanger were analyzed. The test results indicated that the pile heat transfer efficiency gradually decreases to a stable state with the development of cycling. The temperature in the energy pile shaft in loess soils decreases with the depth and the cooling-heating cycles will cause accumulation of settlement of the pile. Compared with the energy pile only experiencing heating-cooling cycles, the energy pile experiencing loading throughout the heating-cooling cycles will result in a greater accumulative settlement of pile and a smaller settlement in soil surface as well as a greater range of soils influenced surrounding the pile. For the two above conditions, the maximum superimposed stress will occur near the middle of the pile shaft after the cooling-heating cycles are stable. Heating process will induce negative, positive skin friction on the upper and lower pile shaft, respectively. While cooling process will cause opposite skin friction on the upper and lower pile shaft.

关键词

地热能 / 能量桩 / 黄土地基 / 模型试验 / 冷热循环 / 热-力耦合

Key words

geothermal energy / energy pile / loess foundation / model test / cooling-heating cycles / thermo-mechanical coupling

引用本文

导出引用
曹卫平, 李庆, 李清源. 黄土地基中能量桩热力学特性及承载变形性状模型试验研究[J]. 太阳能学报. 2023, 44(4): 539-546 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0812
Cao Weiping, Li Qing, Li Qingyuan. MODEL TEST ON THERMO-MECHANICAL CHARACTERISTICS AND BEARING DEFORMATION BEHAVIOR OF ENERGY PILE INLOESS FOUNDATION[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 539-546 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0812
中图分类号: TU473.1   

参考文献

[1] ROTTA LORIA A F, GUNAWAN A, SHI C, et al. Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads[J]. Geomechanics for energy and the environment, 2015, 1(1): 1-15.
[2] 郝耀虎, 孔纲强, 彭怀风, 等. 桩端约束对桩身热力学特性影响的模拟分析[J]. 防灾减灾工程学报, 2017, 37(4): 532-539.
HAO Y H, KONG G Q, PENG H F, et al.Analysis of thermo-mechanical behavior of single pile influenced by pile tip constraint[J]. Journal of disaster prevention and mitigation engineering, 2017, 37(4): 532-539.
[3] SUTMAN M, BRETTMANN T, OLGUN C G.Full-scale in-situ tests on energy piles: Head and base-restraining effects on the structural behaviour of three energy piles[J]. Geomechanics for energy and the environment, 2019, 18: 56-68.
[4] 郭易木, 钟鑫, 刘松玉, 等. 自由约束条件下分层地基中PHC能源桩热力响应原型试验研究[J]. 岩石力学与工程学报, 2019, 38(3): 582-590.
GUO Y M, ZHOU X, LIU S Y, et al.Prototype experimental investigation on the thermo-mechanical behaviors of free constrained full-scale PHC energy piles in multi-layer strata[J]. Chinese journal of rock mechanics and engineering, 2019, 38(3): 582-590.
[5] BAO X H, LI Y B, FENG T J, et al.Investigationon thermo-mechanical behavior of reinforced concrete energy pile with large cross-section in saturated sandy soil by model experiments[J]. Underground space, 2020, 5(3): 229-241.
[6] YANG W B, SUN T F, YANG B B, et al.Laboratory study on the thermo mechanical behaviour of a phase change concrete energy pile in summer mode[J]. Journal of energy storage, 2021, 41: 1-12.
[7] 孔纲强, 王成龙, 刘汉龙, 等. 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 958-964.
KONG G Q, WANG C L, LIU H L, et al.Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and soil mechanics, 2017, 38(4): 958-964.
[8] JGJ 106—2014. 建筑基桩检测技术规范[S].
JGJ 106—2014. Technical code for testing of building foundation piles[S].
[9] 任建喜, 韩强, 高虎艳, 等. 西安地铁沿线地层温度冬季分布规律观测研究[J]. 城市轨道交通研究, 2012, 15(10): 39-42.
REN J X, HAN Q, Gao H Y, et al.On the distribution law of geothermal formation in winter along Xi'an metro line[J]. Urban mass transit, 2012, 15(10): 39-42.
[10] 董西好, 叶万军, 杨更社, 等. 温度对黄土热参数影响的试验研究[J]. 岩土力学, 2017, 38(10): 2888-2894, 2900.
DONG X H, YE W J, YANG G S, et al.Experimental study of influence of temperature on thermal properties of loess[J]. Rock and soil mechanics, 2017, 38(10): 2888-2894, 2900.
[11] SANI A K, RAO M S.Response of unsaturated soils to heating of geothermal energy pile[J]. Renewable energy, 2020, 147: 2618-2632.
[12] YOU S, CHENG X H, GUO H X, et al.In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers[J]. Energy and buildings, 2014, 79: 23-31.
[13] AMATYA B L, SOGA K, BOURNE-WEBB P J, et al.Thermo-mechanical behaviour of energy piles[J]. Géotechnique, 2012, 62(6): 503-519.

基金

陕西省自然科学基础研究计划——一般项目

PDF(2117 KB)

Accesses

Citation

Detail

段落导航
相关文章

/