基于麻雀搜索算法的风电机组独立变桨控制研究

孙欣宇, 向东, 丁伟, 赵开阔

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 266-274.

PDF(3268 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3268 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 266-274. DOI: 10.19912/j.0254-0096.tynxb.2022-0817

基于麻雀搜索算法的风电机组独立变桨控制研究

  • 孙欣宇, 向东, 丁伟, 赵开阔
作者信息 +

RESEARCH ON INDIVIDUAL PITCH CONTROL OF WIND TURBINE BASED ON SPARROW SEARCH ALGORITHM

  • Sun Xinyu, Xiang Dong, Ding Wei, Zhao Kaikuo
Author information +
文章历史 +

摘要

通过FAST和Simulink联合仿真,建立风电机组整体模型,基于载荷反馈建立风电机组独立变桨PI控制模型,利用麻雀搜索算法进行PI参数的整定,将所得寻优参数导入风电机组模型中,并与基于粒子群优化算法建立的独立变桨控制器、经典统一变桨控制器进行对比。仿真结果表明:基于载荷反馈建立的独立变桨控制模型可有效抑制叶根处不平衡载荷,利用麻雀搜索算法建立的独立变桨控制器相对于另外两种控制器可显著减小风电机组叶根处不平衡载荷,具有更快的桨距角响应速度和更稳定的输入转速、输出功率。

Abstract

The integrated model of wind turbine was established through the co-simulation of FAST and Simulink, and the individual pitch PI control model was established based on the load feedback. The sparrow search algorithm was used to set PI control parameters, the optimized parameters were imported into the wind turbine model, and compared with the individual pitch controller based on particle swarm optimization algorithm and the classical collective pitch controller. The simulation results show that the individual pitch control model based on load feedback can effectively suppress the unbalanced load at the blade root. Compared with the other two controllers, the individual pitch controller established by sparrow search algorithm can significantly reduce the unbalanced load at the blade root of wind turbine. It has faster pitch angle response speed and more stable input speed, output power.

关键词

风电 / 风力机 / PI控制 / 独立变桨控制 / 麻雀搜索算法

Key words

wind power / wind turbines / PI control / individual pitch control / sparrow search algorithm

引用本文

导出引用
孙欣宇, 向东, 丁伟, 赵开阔. 基于麻雀搜索算法的风电机组独立变桨控制研究[J]. 太阳能学报. 2023, 44(10): 266-274 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0817
Sun Xinyu, Xiang Dong, Ding Wei, Zhao Kaikuo. RESEARCH ON INDIVIDUAL PITCH CONTROL OF WIND TURBINE BASED ON SPARROW SEARCH ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 266-274 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0817
中图分类号: TK83   

参考文献

[1] 彭继慎, 丁紫佩, 丁柏闻. 基于方位角权系数分配的独立变桨距控制[J]. 控制工程, 2014, 21(6): 829-832, 837.
PENG J S, DING Z P, DING B W.Individual pitch control based on azimuth angle weight number assignment[J]. Control engineering of China, 2014, 21(6): 829-832, 837.
[2] 刘皓明, 唐俏俏, 张占奎, 等. 基于方位角和载荷联合反馈的独立变桨距控制策略研究[J]. 中国电机工程学报, 2016, 36(14): 3798-3806.
LIU H M, TANG Q Q, ZHANG Z K, et al.Study of individual pitch control based on azimuth angle and load feedback[J]. Proceedings of the CSEE, 2016, 36(14): 3798-3806.
[3] 吴宗卓. 大数据时代群体智能算法的优越性研究[J]. 无线互联科技, 2019, 16(2): 110-111.
WU Z Z.Research on the superiority of swarm intelligence algorithm in the era of big data[J]. Wireless internet technology, 2019, 16(2): 110-111.
[4] 高岳林, 杨钦文, 王晓峰, 等. 新型群体智能优化算法综述[J]. 郑州大学学报(工学版), 2022, 43(3): 21-30.
GAO Y L, YANG Q W, WANG X F, et al.Overview of new swarm intelligent optimization algorithms[J]. Journal of Zhengzhou University (engineering science), 2022, 43(3): 21-30.
[5] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-international Conference on Neural Networks, IEEE, 1995.
[6] ZAHRA B, SALHI H, MELLIT A.Wind turbine performance enhancement by control of pitch angle using PID controller and particle swarm optimization[C]// International Conference on Electrical Engineering-boumerdes. IEEE, 2017.
[7] EBRAHIM M A, BECHERIF M, ABDELAZIZ A Y.Dynamic performance enhancement for wind energy conversion system using moth-flame optimization based blade pitch controller[J]. Sustainable energy technologies & assessments, 2018, 27: 206-212.
[8] 黄琳妮. 基于群飞蛾扑火算法的风力发电系统PI控制参数优化整定[D]. 广州: 华南理工大学, 2018.
HUANG L N.Optimization of PI control parameters of wind energy system based on swarm moths flame algorithm[D]. Guangzhou: South China University of Technology, 2018.
[9] 宋文静, 谢源, 黄文君, 等. 改进灰狼优化算法在变桨距自抗扰控制中的应用[J]. 可再生能源, 2020, 38(7): 905-910.
SONG W J, XIE Y, HUANG W J, et al.Application of improved grey wolf optimization algorithm in variable pitch auto disturbance rejection control[J]. Renewable energy resources, 2020, 38(7): 905-910.
[10] 苑晨阳, 李静, 陈健云, 等. 大型风电机组变桨距ABC-PID控制研究[J]. 太阳能学报, 2019, 40(10): 3002-3008.
YUAN C Y, LI J, CHEN J Y, et al.Research on ABC-PID pitch control of large-scale wind turbines[J]. Acta energiae solaris sinica, 2019, 40(10): 3002-3008.
[11] XUE J K, SHEN B.A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 2020, 8(1): 22-34.
[12] JONKMAN J M, BUHL M L.FAST user’s guide-updated august 2005[J]. Scitech connect fast users guide updated august, 2005: 15020796.
[13] KAIMAL J C, WYNGAARD J C, IZUMI Y, et al.Spectral characteristics of surface-layer turbulence[J]. Quarterly journal of the Royal Meteorological Society, 1972, 98(417): 563-589.
[14] JONKMAN B J.Turbsim user’s guide: version 1.50[J]. NREL report national renewable energy laboratory, 2009: 965520.
[15] ZHANG Y Q, CHEN Z, CHENG M.Proportional resonant individual pitch control for mitigation of wind turbines loads[J]. IET renewable power generation, 2013, 7(3): 191-200.
[16] FATHY A, KASSEM A M.Antlion optimizer-ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine[J]. ISA transactions, 2019, 87: 282-296.
[17] MOMANI S, El-KHAZALI R, BATIHA I M.Tuning PID and PIλDδ controllers using particle swarm optimization algorithm via El-Khazali’s approach[C]// AIP Conference Proceedings, AIP Publishing LLC AIP Publishing, Sozopol, Bulgaria, 2019.
[18] 邓筑利. 基于自适应容错控制的海上漂浮式风力机独立变桨控制研究[D]. 重庆: 重庆大学, 2020.
DENG Z L.Research on independent pitch control of offshore floating wind turbine based on adaptive fault-tolerant control[D]. Chongqing: Chongqing University, 2020.
[19] 蒋李. 风电齿轮箱鲁棒优化设计方法研究[D]. 北京: 清华大学, 2018.
JIANG L.Research on robust optimization design method of wind turbine gearbox [D]. Beijing: Tsinghua University, 2018.

基金

国家自然科学基金(51975323)

PDF(3268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/