针对复杂工况下的直驱式波浪发电系统功率提取问题,提出一类超螺旋滑模控制策略。由ANSYS软件获取浮子辐射力信息,建立系统水动力方程,构造并求解能量函数,得到最大功率捕获策略下的参考电磁力。以电压、电流为输入,设计基于超螺旋滑模的模型参考自适应速度观测器,实现无速度传感器控制。结合矢量控制策略,设计超螺旋滑模电流控制环,保证系统对参考信号的跟踪效果。仿真结果表明,所提速度观测器观测误差小,电流控制环可准确跟踪期望电流,系统输出功率提高,动态性能更好。
Abstract
Aimed at the power extraction of direct drive wave power generation system under complex working conditions, a super-twisting sliding mode control strategy was proposed. The radiation force information was obtained by ANSYS and the hydrodynamic equation of the system was established. By constructing and solving the energy function, the reference electromagnetic force under the maximum power capture strategy was obtained. Taking the voltage and current as input, a model reference adaptive velocity observer based on super-twisting sliding mode is designed, the speed sensorless control was realized. Combined with the vector control strategy, the super spiral sliding mode current control ring is designed to ensure the tracking effect of the reference signal. The simulation results show that the proposed speed observer has less observation error, the current control loop can accurately track the expectation current, the system output power is improved and the dynamic performance is better.
关键词
波浪能 /
模型参考自适应控制 /
永磁同步直线电机 /
超螺旋滑模
Key words
wave power /
model reference adaptive control /
permanent magnet synchronous liner machine /
super-twisting sliding mode
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MAREI M I, MOKHTAR M, EL-SATTAR A.MPPT strategy based on speed control for AWS-based wave energy conversion system[J]. Renewable energy, 2015, 83: 305-317.
[2] 肖晓龙, 肖龙飞, 杨立军. 串联直驱浮子式波浪能发电装置能量捕获研究[J]. 太阳能学报, 2018, 39(2): 398-405.
XIAO X L, XIAO L F, YANG L J.Energy harvesting study of series direct driven float wave energy converter[J]. Acta energiae solaris sinica, 2018, 39(2): 398-405.
[3] 康庆, 肖曦, 聂赞相, 等. 直驱型海浪发电系统输出功率优化控制策略[J]. 电力系统自动化, 2013, 37(3): 24-29.
KANG Q, XIAO X, NIE Z X, et al.An optimal control strategy for output power of the directly driven wave power generation system[J]. Automation of electric power systems, 2013, 37(3): 24-29.
[4] JAMA M, WAHYUDIE A, ASSI A, et al.An intelligent fuzzy logic controller for maximum power capture of point absorbers[J]. Energies, 2014, 7(6): 4033-4053.
[5] 蔡浩然, 杨俊华, 林巧梅, 等. 傅氏分析反步法直驱型海浪发电系统功率优化控制[J]. 电测与仪表, 2018, 55(18): 57-63.
CAI H R, YANG J H, LIN Q M, et al.An optimal control strategy for output power of directly driven wave generation system based on Fourier analysis back-stepping method[J]. Electrical measurement & instrumentation, 2018, 55(18): 57-63.
[6] 卢思灵, 杨俊华, 沈辉, 等. 直驱式波浪发电系统的经济模型预测控制[J]. 电测与仪表, 2021, 58(3): 131-138.
LU S L, YANG J H, SHEN H, et al.Economic model predictive control of direct-drive wave power generation systems[J]. Electrical measurement & instrumentation, 2021, 58(3): 131-138.
[7] 谢泽坤, 杨金明, 黄伟, 等. 阿基米德浮子式波浪发电系统的无源控制[J]. 控制理论与应用, 2019, 36(3): 383-388.
XIE Z K, YANG J M, HUANG W, et al.Passive control of Archimedes wave swing wave power generation system[J]. Control theory & applications, 2019, 36(3): 383-388.
[8] 林巧梅, 杨俊华, 蔡浩然, 等. 基于滑模控制的直驱式波浪发电系统MPPT控制策略[J]. 电测与仪表, 2018, 55(10): 90-95.
LIN Q M, YANG J H, CAI H R, et al.MPPT algorithm for direct-drive wave power generation system based on sliding mode control[J]. Electrical measurement & instrumentation, 2018, 55(10): 90-95.
[9] 黄俊豪, 杨俊华, 蔡浩然, 等. 基于WFT的直驱式波浪能发电系统自抗扰功率优化控制[J]. 可再生能源, 2021, 39(9): 1271-1278.
HUANG J H, YANG J H, CAI H R, et al.Optimal power control of active disturbance rejection for direct drive wave power generation system based on WFT[J]. Renewable energy resources, 2021, 39(9): 1271-1278.
[10] YANG J H, HUANG B Z, SHEN H, et al.EKF based fuzzy PI controlled speed sensorless power optimal control of a direct drive power system[J]. IEEE access, 2019, 7: 61610-61619.
[11] TANG Q P, SHEN A W, LUO P, et al.IPMSMs sensorless MTPA control based on virtual q-axis inductance by using virtual high-frequency signal injection[J]. IEEE transactions on industrial electronics, 2020, 67(1): 136-146.
[12] ZAKY M S, METWALY M K, AZAZI H Z, et al.A new adaptive SMO for speed estimation of sensorless induction motor drives at zero and very low frequencies[J]. IEEE transactions on industrial electronics, 2018, 65(9): 6901-6911.
[13] WANG Z, ZHENG Y, ZOU Z X, et al.Position sensorless control of interleaved CSI fed PMSM drive with extended Kalman filter[J]. IEEE transactions on magnetics, 2012, 48(11): 3688-3691.
[14] 郭伟, 王跃, 李宁, 等. 永磁同步电机模型参考自适应无速度控制研究[J]. 电力电子技术, 2016, 50(8): 75-77.
GUO W, WANG Y, LI N, et al.A speed sensorless control strategy for PMSM with model reference adaptive[J]. Power electronics, 2016, 50(8): 75-77.
[15] 程正顺. 浮子式波浪能转换装置机理的频域及时域研究[D]. 上海: 上海交通大学, 2013.
CHENG Z S.Frequency domain and time domain analysis on mechanism of a point absorber wave energy convertor [D]. Shanghai: Shanghai Jiao Tong University, 2013.
[16] LEVANT A.Principles of 2-sliding mode design[J]. Automatica, 2007, 43(4): 576-586.
[17] 赵佳奇. 永磁同步发电机无速度传感器控制[J]. 控制工程, 2016, 23(11): 1752-1756.
ZHAO J Q.Speed sensorless control of permanent magnet synchronous generators[J]. Control engineering of China, 2016, 23(11): 1752-1756.
[18] 吴元凯, 范菁, 李晨光, 等. 基于双滑模变结构MRAS的PMSM矢量控制研究[J]. 计算机仿真, 2022, 39(2): 273-277.
WU Y K, FAN J, LI C G, et al.PMSM speed sensorless control method based on double S liding mode variable structure MRAS[J]. Computer simulation, 2022, 39(2): 273-277.
[19] YU Z, FALNES J.State-space modelling of a vertical cylinder in heave[J]. Applied ocean research, 1995, 17(5): 265-275.
基金
国家自然科学基金(62173148); 广东省自然科学基金(2022A1515010150; 2023A1515010184); 广东省基础与应用基础研究基金(2022A1515240026)