考虑风电机组控制参数相互耦合,为解决控制参数不精确以及控制目标难以兼顾问题,提出一种基于塔架主动阻尼控制的自适应变速控制参数优化方法。首先,基于转矩-转速系统和塔架侧向主动阻尼控制完成数学和动力学建模,并计算主动阻尼增益初始值。其次,为便于整定PI控制参数和分析计算,针对惯性较大的转矩-转速系统采用Routh法将其辨识为低阶惯性系统,进而采用时间加权绝对误差积分准则整定变速系统PI控制参数初始值。最后,为保持最优控制状态,基于灾变遗传算法优化各风速点变速系统PI控制参数和主动阻尼增益,并将其分别与风速拟合构建自适应控制。算例分析通过比较频域特性、控制精度、塔架振动和载荷情况验证了所提方法的有效性。
Abstract
Considering the mutual coupling of control parameters of wind turbines, in order to solve the problems of inaccurate control parameters and difficulty taking into consideration control objectives, an adaptive variable speed control parameter optimization method based on active damping control of the tower is proposed. Firstly, the mathematical and dynamic model is established based on the torque-speed system and the tower side active damping control, and the initial value of the active damping gain is calculated. Secondly, in order to facilitate the tuning of PI control parameters and analysis and calculation, the Routh method is used to identify the torque-speed system with large inertia as a low-order inertial system, and then the Integrated Time and Absolute Error criterion is used to set the initial value of the PI control parameters of the variable speed system. Finally, in order to maintain the optimal control state, the PI control parameters and active damping gain of the variable speed system at each wind speed point are optimized based on the catastrophic genetic algorithm, and the adaptive control is constructed by fitting them with the wind speed respectively. An example analysis verifies the effectiveness of the proposed method by comparing the frequency domain characteristics, control accuracy, tower vibration, and load conditions.
关键词
风电机组 /
变速控制 /
阻尼 /
参数优化 /
灾变遗传算法
Key words
wind turbines /
speed control /
damping /
parameter optimization /
catastrophe genetic algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MULJADI E, BUTTERFIELD C P.Pitch-controlled variable speed wind turbine generation[J]. IEEE transactions on industry applications, 2000, 37(1): 240-246.
[2] 周连俊, 殷明慧, 杨炯明, 等. 考虑变化湍流风速条件的风电机组改进自适应转矩控制[J]. 电力系统自动化, 2021, 45(1): 184-191.
ZHOU L J, YIN M H, YANG J M, et al.Improved adaptive torque control for wind turbine considering varying turbulence conditions[J]. Automation of electric power systems, 2021, 45(1): 184-191.
[3] 姚琦, 胡阳, 柳玉, 等. 考虑载荷抑制的风电场分布式自动发电控制[J]. 电工技术学报, 2022, 37(3): 697-706.
YAO Q, HU Y, LIU Y, et al.Distributed automatic generation control of wind farm considering load suppression[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 697-706.
[4] 陈鹏伟, 戚陈陈, 陈新, 等. 附加频率控制双馈风电场频率响应特性建模与参数辨识[J]. 电工技术学报, 2021, 36(15): 3293-3307.
CHEN P W, QI C C, CHEN X, et al.Frequency response modeling and parameter identification of doubly-fed wind farm with additional frequency control[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3293-3307.
[5] 盛四清, 李朋旺, 顾清. 提高风电渗透率极限的火电机组惯性参数优化方法[J]. 电力系统自动化, 2020, 44(2): 181-188.
SHENG S Q, LI P W, GU Q.Optimization method for inertia parameters of thermal power units to improve wind power penetration limit[J]. Automation of electric power systems, 2020, 44(2): 181-188.
[6] 娄尧林, 蔡旭, 叶杭冶, 等. 基于转矩随动控制的风电机组最优发电研究[J]. 电工技术学报, 2018, 33(8): 1884-1893.
LOU Y L, CAI X, YE H Y, et al.Optimal generator based on torque follow-up control for wind turbine[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1884-1893.
[7] 高峰, 王伟, 杨锡运. 基于免疫遗传算法的风力发电机组变增益PI控制器参数整定与优化[J]. 动力工程学报, 2016, 36(1): 22-29.
GAO F, WANG W, YANG X Y.Parameters tuning and optimization for variable gain PI controller of wind turbine based on immune genetic algorithm[J]. Journal of Chinese Society of Power Engineering, 2016, 36(1): 22-29.
[8] 王煜翔. 大型风电机组塔架与传动链降载控制[D]. 北京: 华北电力大学, 2018.
WANG Y X.Load reduction control of tower and transmission chain of large wind turbine[D]. Beijing: North China Electric Power University, 2018.
[9] 应有, 朱重喜, 杨帆, 等. 大型风电机组塔架主动阻尼控制技术研究[J]. 太阳能学报, 2015, 36(1): 54-60.
YING Y, ZHU C X, YANG F, et al.Research on active damping control technology of large wind turbine tower[J]. Acta energiae solaris sinica, 2015, 36(1): 54-60.
[10] 叶杭冶, 潘东浩. 风电机组变速与变桨距控制过程中的动力学问题研究[J]. 太阳能学报, 2007, 28(12): 1321-1328.
YE H Y, PAN D H.Research on dynamic problems in variable speed and pitch control of wind turbine[J]. Acta energiae solaris sinica, 2007, 28(12): 1321-1328.
[11] GAMBIER A, BEHERA A.Integrated pitch control system design of a wind turbine by using multiobjective optimization[J]. IFAC-PapersOnLine, 2018, 51(28): 239-244.
[12] 田德, 高洋, 闫肖蒙, 等. 基于差分进化算法的风电机组变桨参数寻优[J]. 太阳能学报, 2019, 40(8): 2154-2161.
TIAN D, GAO Y, YAN X M, et al.Optimization of pitch controller parameters for wind turbine based on differential evolution algorithm[J]. Acta energiae solaris sinica, 2019, 40(8): 2154-2161.
[13] 高峰, 王伟, 凌新梅. 基于Bladed风电机组变速与变桨距控制器参数优化[J]. 系统仿真学报, 2016, 28(7): 1644-1650, 1660.
GAO F, WANG W, LING X M.Parameters optimization for variable speed and pitch controller based on Bladed wind turbine[J]. Journal of system simulation, 2016, 28(7): 1644-1650, 1660.
[14] IQBAL A, DENG Y, SALEEM A, et al.Proposed particle swarm optimization technique for the wind turbine control system[J]. Measurement and control, 2020, 53(5-6): 1022-1030.
[15] 高峰, 凌新梅, 王伟. 大型风电机组独立变桨控制器PI参数联合整定[J]. 太阳能学报, 2018, 39(2): 307-314.
GAO F, LING X M, WANG W.Joint tuning of PI parameters of independent pitch controller for large wind turbine[J]. Acta energiae solaris sinica, 2018, 39(2): 307-314.
[16] SONG Z Q, LIU J Z, HU Y.Real-time performance analyses and optimal gain-scheduling control of offshore wind turbine under ice creep loads[J]. IEEE access, 2019, 7: 181706-181720.
[17] BOSSANYI E A.GH bladed: theory manual[M]. Bristol: Garrad Hassan and Partners Ltd, 2012.
[18] 叶杭冶. 风力发电机组的控制技术[M]. 北京: 机械工业出版社, 2015.
YE H Y.Control technology of wind turbine[M]. Beijing: China Machinery Press, 2015.
[19] 刘雄, 李钢强, 陈严, 等. 水平轴风力机筒型塔架动态响应分析[J]. 太阳能学报, 2010, 31(4): 412-417.
LIU X, LI G Q, CHEN Y, et al.Dynamic response analysis of the tubular tower of horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2010, 31(4): 412-417.
[20] CHAND M.Reducing model ordering using Routh approximation method[J]. International journal of emerging technology and advanced engineering, 2014: 8(4): 496-499.
[21] 薛定宇. 控制系统计算机辅助设计[M]. 北京: 清华大学出版社, 2006.
XUE D Y.Computer aided design of control system[M]. Beijing: Tsinghua University Press, 2006.
[22] 轩华, 刘淑燕, 王薛苑, 等. 带不相关机的可重入柔性流水车间问题的改进灾变遗传算法[J]. 工业工程与管理, 2021, 26(5), 161-171.
XUAN H, LIU S Y, WANG X Y, et al.Improved catastrophe genetic algorithm for reentrant flexible flow shop problem with uncorrelated machines[J]. Industrial engineering and management, 2021, 26(5): 161-171.
[23] 韩平平, 潘薇, 张楠, 等. 基于负荷预测和非支配排序遗传算法的人工相序优化方法[J]. 电力系统自动化, 2020, 44(20): 71-78.
HAN P P, PAN W, ZHANG N, et al.Optimization method for artificial phase sequence based on load forecasting and non dominated sorting genetic algorithm[J]. Automation of electric power systems, 2020, 44(20): 71-78.
[24] HAMIDREZA J, JEFF P.Gain-scheduled: optimal control of variable-speed-variable-pitch wind turbines[J]. IEEE transactions on control systems technology, 2014, 23(1): 372-379.
基金
国家自然科学基金(51677121); 辽宁省中央引导地方科技发展资金计划(2021JH6/10500166); 揭榜挂帅科技攻关专项(2021020545-JH1/104)