基于CSwin的航拍光伏组件红外图像热斑检测方法

王巍, 赵宽, 杨耀权, 翟永杰

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 142-147.

PDF(3374 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3374 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 142-147. DOI: 10.19912/j.0254-0096.tynxb.2022-0846

基于CSwin的航拍光伏组件红外图像热斑检测方法

  • 王巍, 赵宽, 杨耀权, 翟永杰
作者信息 +

A HOTSPOT DETECTION METHOD FOR INFRARED IMAGES OF AERIAL PHOTOVOLTAIC MODULES BASED ON CSWIN

  • Wang Wei, Zhao Kuan, Yang Yaoquan, Zhai Yongjie
Author information +
文章历史 +

摘要

针对航拍光伏组件红外图像低对比度、背景复杂和热斑小目标难检测的问题,提出一种融合Swin transformer的跨阶段局部网络(CSwin),降低参数量的同时可捕获图像全局位置和空间信息,并以CSwin为基础模块构建多尺度特征路径聚合网络(MPC)加强多尺度特征的信息交互以进一步提高小目标检测能力。对航拍光伏红外图像数据集进行定性和定量实验,证明该方法在航拍光伏红外图像热斑检测任务上的有效性。

Abstract

Aiming at the problems of low contrast, complex background and difficult detection of small hot spots in aerial photovoltaic infrared images, a cross-stage partial network incorporating Swin transformer (CSwin) is proposed to reduce the number of parameters and capture the global position and spatial information of the image. The multi-scale feature path aggregation network based on CSwin (MPC) is constructed to strengthen the information interaction of multi-scale features and further improve the small target detection ability. The qualitative and quantitative experiments are carried out on the aerial photovoltaic infrared image data set, and the effectiveness of the method in aerial photovoltaic infrared image hot spot detection in proved.

关键词

光伏组件 / 目标检测 / 深度学习 / YOLOv5 / 多尺度特征融合 / 红外图像 / 热斑检测 / Swin transformer

Key words

PV modules / object detection / deep learning / YOLOv5 / multi-scale feature fusion / infrared image / hot spot detection / Swin transformer

引用本文

导出引用
王巍, 赵宽, 杨耀权, 翟永杰. 基于CSwin的航拍光伏组件红外图像热斑检测方法[J]. 太阳能学报. 2023, 44(10): 142-147 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0846
Wang Wei, Zhao Kuan, Yang Yaoquan, Zhai Yongjie. A HOTSPOT DETECTION METHOD FOR INFRARED IMAGES OF AERIAL PHOTOVOLTAIC MODULES BASED ON CSWIN[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 142-147 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0846
中图分类号: TP183   

参考文献

[1] 高伟, 黄俊铭. 基于SSELM的光伏组件故障智能诊断方法[J]. 太阳能学报, 2021, 42(12): 465-470.
GAO W, HUANG J M.Intelligent fault diagnosis method of photovoltaic module via SSELM[J]. Acta energiae solaris sinica, 2021, 42(12): 465-470.
[2] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating PV arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[3] 蒋琳, 苏建徽, 李欣, 等. 基于可见光和红外热图像融合的光伏阵列热斑检测方法[J]. 太阳能学报, 2022, 43(1): 393-397.
JIANG L, SU J H, LI X, et al.Hot spot detection of photovoltaic array based on fusion of visible and infrared thermal images[J]. Acta energiae solaris sinica, 2022, 43(1): 393-397.
[4] SU B Y, CHEN H Y, LIU K, et al.RCAG-net: residual channelwise attention gate network for hot spot defect detection of photovoltaic farms[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1-14.
[5] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[6] LIU Z, LIN Y T, CAO Y, et al.Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada, 2022: 9992-10002.
[7] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[8] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(2): 318-327.
[9] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in2021[EB/OL]. 2021: arXiv: 2107.08430. https://arxiv.org/abs/2107.08430.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].2020: arXiv: 2004. 10934. https://arxiv.org/abs/2004.10934.
[11] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//European Conference on Computer Vision, Cham, Switzerland, Springer, 2014: 346-361.
[12] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL].2020: arXiv: 2010.11929. https://arxiv.org/abs/2010.11929.
[13] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 770-778.
[14] LIU W, ANGUELOV D, ERHAN D, et al.SSD: single shot MultiBox detector[C]//European Conference on Computer Vision, Cham,Switzerland, Springer, 2016: 21-37.
[15] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 936-944.
[16] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL].2018: arXiv: 1804.02767. https://arxiv.org/abs/1804.02767.

基金

国家自然科学基金(U21A20486); 河北省自然科学基金(F2021502008)

PDF(3374 KB)

Accesses

Citation

Detail

段落导航
相关文章

/