高比例光伏接入的电力系统暂态过电压控制策略

王蒙, 张文朝, 汪莹, 柳顺楠, 王聪, 崔曦文

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 148-155.

PDF(1711 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1711 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 148-155. DOI: 10.19912/j.0254-0096.tynxb.2022-0847

高比例光伏接入的电力系统暂态过电压控制策略

  • 王蒙1, 张文朝2, 汪莹1, 柳顺楠2, 王聪1, 崔曦文2
作者信息 +

TRANSIENT OVERVOLTAGE CONTROL STRATEGY OF POWER SYSTEM CONSIDERING HIGH PROPORTION PHOTOVOLTAIC ACCESS

  • Wang Meng1, Zhang Wenchao2, Wang Ying1, Liu Shunnan2, Wang Cong1, Cui Xiwen2
Author information +
文章历史 +

摘要

为确保高比例光伏接入的电力系统安全稳定运行,提出一种“整流站-光伏电站”暂态过电压分层控制策略。首先,对高比例光伏直流外送系统送端电网暂态过电压原理进行分析,建立“整流站-光伏电站”暂态过电压分层控制模型。然后,结合联合调用法和一致性算法对控制模型进行求解,通过整流站调相机参数优化控制和光伏逆变器无功回退分配控制对暂态过电压进行抑制。最后,以中国西北地区某高比例光伏电网为例,建立高比例光伏接入的直流外送系统实验仿真模型。算例结果分析表明,所提出的暂态过电压分层控制策略显著增强了系统的电压调节能力,提升了系统运行的可靠性。

Abstract

The paper proposes a "rectifier station-photovoltaic power station" transient overvoltage hierarchical control strategy. Firstly, the principle of transient overvoltage at the sending end of the high-proportion photovoltaic DC transmission system is analyzed, and a layered control model of transient overvoltage of "rectifier station-photovoltaic power station" is established. Then, combined with the joint calling method and the consistency algorithm, the control model is solved, and the transient overvoltage is suppressed through the optimization control of the rectifier station camera parameters and the reactive power back-off distribution control of the photovoltaic inverter. Finally, taking a high-proportion photovoltaic power grid in Northwest of our country as an example, an experimental simulation model of a DC transmission system with high-proportion photovoltaic access is established. The example analysis results show that the transient overvoltage hierarchical control strategy proposed in this paper massively enhances the regulation capability of the power system.

关键词

光伏发电 / 高压直流输电 / 分层控制系统 / 暂态过电压保护

Key words

photovoltaic power / HVDC power transmission / hierarchical systems / transient overvoltage protection

引用本文

导出引用
王蒙, 张文朝, 汪莹, 柳顺楠, 王聪, 崔曦文. 高比例光伏接入的电力系统暂态过电压控制策略[J]. 太阳能学报. 2023, 44(10): 148-155 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0847
Wang Meng, Zhang Wenchao, Wang Ying, Liu Shunnan, Wang Cong, Cui Xiwen. TRANSIENT OVERVOLTAGE CONTROL STRATEGY OF POWER SYSTEM CONSIDERING HIGH PROPORTION PHOTOVOLTAIC ACCESS[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 148-155 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0847
中图分类号: TM73   

参考文献

[1] 秦博宇, 李恒毅, 张哲, 等. 地下空间支撑下的电力能源系统:构想、挑战与展望[J]. 中国电机工程学报, 2022, 42(4): 1321-1332.
QIN B Y, LI H Y, ZHANG Z, et al.Underground space supported electric energy systems: conceptions, challenges, and prospects[J]. Proceedings of the CSEE, 2022, 42(4): 1321-1332.
[2] 王若谷, 张若微, 高鑫, 等. 抑制送端过电压的直流近区大规模光伏发电非线性鲁棒控制策略[J]. 南方电网技术, 2022, 16(10): 87-94.
WANG R G, ZHANG R W, GAO X, et al.Nonlinear robust control strategy for large scale photovoltaic generation in DC near area to suppress sending-end overvoltage[J]. Southern power system technology, 2022, 16(10): 87-94.
[3] 刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014, 34(16): 2513-2522.
LIU Z Y, ZHANG Q P, DONG C, et al.Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J]. Proceedings of the CSEE, 2014, 34(16): 2513-2522.
[4] 任冲, 柯贤波, 樊国伟, 等. 大规模风电直流送出系统过电压抑制措施及控制方案优化研究[J]. 高压电器, 2020, 56(5): 163-174.
REN C, KE X B, FAN G W, et al.Transient voltage stabilization and control optimization for large-scale wind power UHV DC transmission system[J]. High voltage apparatus, 2020, 56(5): 163-174.
[5] 王宁, 孙玲玲, 贾清泉, 等. 计及光伏调压能力的分布式光伏并网机会约束规划方法[J]. 电工电能新技术, 2018, 37(6): 88-96.
WANG N, SUN L L, JIA Q Q, et al.Chance constrained programming method of distributed photovoltaic grid connection considering PV voltage regulation ability[J]. Advanced technology of electrical engineering and energy, 2018, 37(6): 88-96.
[6] 屠竞哲, 张健, 曾兵, 等. 直流换相失败及恢复过程暂态无功特性及控制参数影响[J]. 高电压技术, 2017, 43(7): 2131-2139.
TU J Z, ZHANG J, ZENG B, et al.HVDC transient reactive power characteristics and impact of control system parameters during commutation failure and recovery[J]. High voltage engineering, 2017, 43(7): 2131-2139.
[7] 冀肖彤. 抑制HVDC送端交流暂态过电压的控制系统优化[J]. 电网技术, 2017, 41(3): 721-728.
JI X T.Optimization of HVDC control system for mitigating AC transient overvoltage on rectifier station[J]. Power system technology, 2017, 41(3): 721-728.
[8] 韩平平, 陈凌琦, 胡迪, 等. 直流闭锁暂态过电压对风电外送影响及其抑制措施[J]. 电力系统保护与控制, 2018, 46(5): 99-105.
HAN P P, CHEN L Q, HU D, et al.Impact of transient overvoltage caused by DC block on wind power transmission and its suppression measure[J]. Power system protection and control, 2018, 46(5): 99-105.
[9] 赵溶溶, 柯德平, 孙元章, 等. 考虑直流闭锁暂态过电压约束的送端电网换流站高效无功规划[J]. 南方电网技术, 2022, 16(7): 10-21.
ZHAO R R, KE D P, SUN Y Z, et al.Efficient reactive power planning of converter station in HVDC sending system considering HVDC blocking transient overvoltage constraint[J]. Southern power system technology, 2022, 16(7): 10-21.
[10] 陈亦平, 陈磊, 叶骏, 等. 发电机高压侧电压控制在抑制云广直流孤岛过电压中的作用[J]. 电力系统自动化, 2014, 38(20): 121-126.
CHEN Y P, CHEN L, YE J, et al.Effect of generator high-voltage-side voltage control on mitigating overvoltage in islanded Yunnan-Guangdong UHVDC sending system[J]. Automation of electric power systems, 2014, 38(20): 121-126.
[11] 刘琳, 雷霄, 孔祥平, 等. 抑制换相失败期间送端电网过电压的控制策略研究[J]. 电力工程技术, 2019, 38(3): 60-66.
LIU L, LEI X, KONG X P, et al.The control strategy for suppressing overvoltage of sending grid during commutation failure[J]. Electric power engineering technology, 2019, 38(3): 60-66.
[12] 胡文平, 胡雪凯, 王蒙, 等. 用于配电网过电压平抑的分布式光伏多模态协调控制算法研究[J]. 电工电能新技术, 2021, 40(9): 18-28.
HU W P, HU X K, WANG M, et al.Research on distributed photovoltaic multi-mode coordinated control algorithm for distribution network overvoltage suppression[J]. Advanced technology of electrical engineering and energy, 2021, 40(9): 18-28.
[13] 索之闻, 刘建琴, 蒋维勇, 等. 大规模新能源直流外送系统调相机配置研究[J]. 电力自动化设备, 2019, 39(9): 124-129.
SUO Z W, LIU J Q, JIANG W Y, et al.Research on synchronous condenser configuration of large-scale renewable energy DC transmission system[J]. Electric power automation equipment, 2019, 39(9): 124-129.
[14] 李帛洋, 晁璞璞, 徐式蕴, 等. 风电经特高压直流送出系统的暂态过电压问题研究综述[J]. 电力自动化设备, 2022, 42(3): 26-35.
LI B Y, CHAO P P, XU S Y, et al.Review on transient overvoltage issues of wind power transmission system via UHVDC[J]. Electric power automation equipment, 2022, 42(3): 26-35.
[15] 朱丽萍, 刘文颖, 邵冲, 等. 基于调相机与SVC协调的抑制高压直流送端风机脱网的控制策略[J]. 电力自动化设备, 2021, 41(6): 107-115.
ZHU L P, LIU W Y, SHAO C, et al.Control strategy of suppressing wind turbine tripping based on coordination between synchronous condenser and SVC in sending-end network of HVDC[J]. Electric power automation equipment, 2021, 41(6): 107-115.
[16] 陈厚合, 鲁华威, 王长江, 等. 抑制直流送端系统暂态过电压的直流和风电控制参数协调优化[J]. 电力自动化设备, 2020, 40(10): 46-55.
CHEN H H, LU H W, WANG C J, et al.Coordinated optimization of HVDC and wind power control parameters for mitigating transient overvoltage on HVDC sending-side system[J]. Electric power automation equipment, 2020, 40(10): 46-55.
[17] 张博, 唐巍, 蔡永翔, 等. 基于一致性算法的户用光伏逆变器和储能分布式控制策略[J]. 电力系统自动化, 2020, 44(2): 86-94.
ZHANG B, TANG W, CAI Y X, et al.Distributed control strategy of residential photovoltaic inverter and energy storage based on consensus algorithm[J]. Automation of electric power systems, 2020, 44(2): 86-94.

PDF(1711 KB)

Accesses

Citation

Detail

段落导航
相关文章

/