建筑组合布局对屋面风能干扰特性的影响研究

王辉, 吴学健, 吴安超, 吴亚雄

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 313-319.

PDF(2493 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2493 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 313-319. DOI: 10.19912/j.0254-0096.tynxb.2022-0849

建筑组合布局对屋面风能干扰特性的影响研究

  • 王辉, 吴学健, 吴安超, 吴亚雄
作者信息 +

RESEARCH ON INFLUENCE OF BUILDING COMBINATION LAYOUTS ON ROOF WIND ENERGY INTERFERENCE CHARACTERISTICS

  • Wang Hui, Wu Xuejian, Wu Anchao, Wu Yaxiong
Author information +
文章历史 +

摘要

采用CFD数值模拟方法,对某串列布局建筑群风场进行模拟,分析施扰建筑高度和建筑间距对受扰建筑屋面风能干扰特性的影响,通过量化比较孤立单体和串列布局建筑屋面风能大小,获取不同工况下屋面各分区气动干扰因子的变化规律。结果表明:孤立单体布局时,建筑风能集聚效果显著,各分区风能沿高度方向变化,屋面上下游位置风能最大值分别位于1.15H和1.20H(H为建筑高度)处;串列布局时,随着施扰建筑高度和建筑间距增大,受扰建筑屋面各分区风能有所减小,相较于孤立单体建筑,屋面上游居中区域的风能最大减小了67.1%;相较于建筑间距变化,施扰建筑高度变化对风能干扰效应影响更大;各分区风能干扰因子IF与特征角呈线性正相关关系。

Abstract

The CFD numerical simulation method was used to simulate the wind field of tandem buildings. The influence of the disturbing building height and spacing on the wind energy of disturbed building roof was analyzed, and the roof wind energy was quantitatively compared under single and tandem buildings, so as to obtain the variation law of interference factors in each zone of the roof under different working conditions. The results show that wind energy agglomeration effect is significant under the single building, and the wind energy in each zone changes continuously along the height direction. The maximum wind energy in the upstream and downstream of the roof is located at 1.15H and 1.20H respectively (H is the building height). In the tandem layout, the wind energy of the disturbed building decrease with the increase of the disturbing building height and spacing, and the wind energy in the upstream center area of the roof is reduced by 67.1%. The change of disturbing building height has a greater impact on interference characteristics than spacing. There is a good linear positive correlation between the interference factors and the characteristic angle in each zone.

关键词

建筑物 / 风能 / 布局形式 / 干扰因子 / 特征角

Key words

buildings / wind energy / layout / interference factor / characteristic angle

引用本文

导出引用
王辉, 吴学健, 吴安超, 吴亚雄. 建筑组合布局对屋面风能干扰特性的影响研究[J]. 太阳能学报. 2023, 44(10): 313-319 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0849
Wang Hui, Wu Xuejian, Wu Anchao, Wu Yaxiong. RESEARCH ON INFLUENCE OF BUILDING COMBINATION LAYOUTS ON ROOF WIND ENERGY INTERFERENCE CHARACTERISTICS[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 313-319 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0849
中图分类号: TK89   

参考文献

[1] AYHAN D, SAĞLAM Ş. A technical review of building-mounted wind power systems and a sample simulation model[J]. Renewable and sustainable energy reviews, 2012, 16(1): 1040-1049.
[2] TOJA-SILVA F, KONO T, PERALTA C, et al.A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation[J]. Journal of wind engineering and industrial aerodynamics, 2018, 180: 66-87.
[3] REZAEIHA A, MONTAZERI H, BLOCKEN B.A framework for preliminary large-scale urban wind energy potential assessment: roof-mounted wind turbines[J]. Energy conversion and management, 2020, 214: 112770.
[4] 王强, 汪建文, 侯亚丽. 集装箱顶风力机的微观选址及功率预测研究[J]. 太阳能学报, 2015, 36(4): 812-817.
WANG Q, WANG J W, HOU Y L.Study on micrositing and power prediction on wind turbine at top of the container[J]. Acta energiae solaris sinica, 2015, 36(4): 812-817.
[5] 侯亚丽, 汪建文, 王强, 等. 平顶建筑物顶面风力机安装位置和高度的研究[J]. 太阳能学报, 2016, 37(1): 236-242.
HOU Y L, WANG J W, WANG Q, et al.Wind turbine installation location and height on roof of flat-top buildings[J]. Acta energiae solaris sinica, 2016, 37(1): 236-242.
[6] TOJA-SILVA F, PERALTA C, LOPEZ-GARCIA O, et al.Roof region dependent wind potential assessment with different RANS turbulence models[J]. Journal of wind engineering and industrial aerodynamics, 2015, 142: 258-271.
[7] YANG A S, SU Y M, WEN C Y, et al.Estimation of wind power generation in dense urban area[J]. Applied energy, 2016, 171: 213-230.
[8] JUAN Y H, WEN C Y, LI Z T, et al.Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays[J]. Applied energy, 2021, 299: 117304.
[9] ŠARKIĆ GLUMAC A, HEMIDA H, HÖFFER R. Wind energy potential above a high-rise building influenced by neighboring buildings: an experimental investigation[J]. Journal of wind engineering and industrial aerodynamics, 2018, 175: 32-42.
[10] 王猛. 不同风剖面对建筑物顶面风力机微观选址的影响研究[D]. 呼和浩特: 内蒙古工业大学, 2018.
WANG M.The influence of different wind profiles on the micro location of wind turbines at the top of the building[D]. Hohhot: Inner Mongolia University of Tehchnology, 2018.
[11] 黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001.
HUANG B C.Principle and application of wind resistance analysis of structures[M]. Shanghai: Tongji University Press, 2001.
[12] WANG Q, WANG J W, HOU Y L, et al.Micrositing of roof mounting wind turbine in urban environment: CFD simulations and lidar measurements[J]. Renewable energy, 2018, 115: 1118-1133.
[13] ABOHELA I, HAMZA N, DUDEK S.Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines[J]. Renewable energy, 2013, 50: 1106-1118.
[14] 姜婷婷, 叶杭冶, 申新贺, 等. 基于风轮面等效风速的风电场发电量评估方法研究[J]. 太阳能学报, 2021, 42(9): 244-249.
JIANG T T, YE H Y, SHEN X H, et al.Research on wind farm power generation assessment based on rotor equivalent wind speed[J]. Acta energiae solaris sinica, 2021, 42(9): 244-249.

基金

亚热带建筑科学国家重点实验室开放课题(2020ZB24); 安徽省自然科学基金(11040606M116); 教育部留学回国人员科研启动基金(教外司留[2011]1568号)

PDF(2493 KB)

Accesses

Citation

Detail

段落导航
相关文章

/