基于动态规划的燃料电池车能量管理策略研究

王志福, 徐崧, 罗崴

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 550-556.

PDF(1877 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1877 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 550-556. DOI: 10.19912/j.0254-0096.tynxb.2022-0852

基于动态规划的燃料电池车能量管理策略研究

  • 王志福1,2, 徐崧1,2, 罗崴3
作者信息 +

RESEARCH ON ENERGY MANAGEMENT STRATEGY OF FUEL CELL VEHICLE BASED ON DYNAMIC PROGRAMMING

  • Wang Zhifu1,2, Xu Song1,2, Luo Wei3
Author information +
文章历史 +

摘要

针对燃料电池货车百公里氢耗率首先采用动态规划算法(DP)的能量管理策略,得出不同功率需求下的能量分配。然后以分配的电机功率(Pre)和动力电池荷电状态(SOC)作为模糊逻辑控制的输入,并用遗传算法(GA)优化模糊规则和隶属度函数。最后在中国货车行驶工况(CHTC-LT)下通过Cruise-Matlab/Simulink环境下设计的整车模型与控制策略进行联合仿真验证。仿真结果表明,模糊逻辑控制策略下与功率跟随策略相比,燃料电池混合动力货车燃油经济性提升了5.2%,且控制动力电池SOC变化稳定在合理范围内。

Abstract

For the 100 km hydrogen consumption rate of fuel cell trucks, the energy management strategy of dynamic programming algorithm (DP) is firstly used to derive the energy allocation under different power demands. Then the allocated motor power (Pre) and power cell SOC are used as inputs for fuzzy logic control, and the genetic algorithm (GA) is used to optimize the fuzzy rules and the affiliation function. Finally, the whole vehicle model and control strategy are jointly simulated and validated by Cruise-Matlab/Simulink environment designed under CHTC-LT operating conditions. The simulation results show that the fuel cell hybrid truck fuel economy is improved by 5.2% under the fuzzy logic control strategy compared with the power following strategy, and the control power cell state of charge (SOC) variation is stabilized within a reasonable range.

关键词

燃料电池 / 动态规划 / 能量管理 / 燃油经济性 / 功率控制

Key words

fuel cells / dynamic programming / energy management / fuel economy / power control

引用本文

导出引用
王志福, 徐崧, 罗崴. 基于动态规划的燃料电池车能量管理策略研究[J]. 太阳能学报. 2023, 44(10): 550-556 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0852
Wang Zhifu, Xu Song, Luo Wei. RESEARCH ON ENERGY MANAGEMENT STRATEGY OF FUEL CELL VEHICLE BASED ON DYNAMIC PROGRAMMING[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 550-556 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0852
中图分类号: U469.72    TM911.4   

参考文献

[1] 李宾. 基于出行工况预测的燃料电池汽车能量管理策略研究[D]. 长春: 吉林大学, 2021.
LI B.Research on energy management strategy of fuel cell vehicle based on driving condition prediction[D]. Changchun: Jilin University, 2021.
[2] KWON L, CHO D S, AHN C.Degradation-conscious equivalent consumption minimization strategy for a fuel cell hybrid system[J]. Energies, 2021, 14(13): 3810.
[3] 江冬冬. 基于模型预测控制的混合动力车辆能量管理[D]. 杭州: 浙江大学, 2020.
JIANG D D.Energy management of hybrid electric vehicles based on model predictive control[D]. Hangzhou: Zhejiang University, 2020.
[4] 王志福, 罗崴, 徐崧, 等. 燃料电池汽车能量管理策略综述[J]. 电池, 2022, 52(3): 328-332.
WANG Z F, LUO W, XU S, et al.A review of energy management strategy for fuel cell vehicle[J]. Battery bimonthly, 2022, 52(3): 328-332.
[5] 冯坚, 韩志玉, 高晓杰, 等. 基于动态规划算法和路况的增程式电动车能耗分析[J]. 同济大学学报(自然科学版), 2019, 47(S1): 115-119.
FENG J, HAN Z Y, GAO X J, et al.Energy consumption analysis of a range-extender electric vehicle based on a dynamic programming algorithm and road conditions[J]. Journal of Tongji University(natural science edition), 2019, 47(S1): 115-119.
[6] YIN H, ZHOU W H, LI M, et al.An adaptive fuzzy logic-based energy management strategy on battery/ultracapacitor hybrid electric vehicles[J]. IEEE transactions on transportation electrification, 2016, 2(3): 300-311.
[7] 牛礼民, 张泉泉, 朱奋田, 等. 基于全局优化算法的增程式电动汽车模糊控制策略[J]. 重庆交通大学学报(自然科学版), 2022, 41(2): 137-145.
NIU L M, ZHANG Q Q, ZHU F T, et al.Fuzzy control strategy for extended range electric vehicle based on global optimization algorithm[J]. Journal of Chongqing Jiaotong University(natural science), 2022, 41(2): 137-145.
[8] ANSAREY M, SHARIAT PANAHI M, ZIAATI H, et al.Optimal energy management in a dual-storage fuel cell hybrid vehicle using multi-dimensional dynamic programming[J]. Journal of power sources, 2014, 250: 359-371.
[9] 刘正杰, 朱云芳, 戴朝华, 等. 增程式燃料电池混合动力有轨电车电源系统优化配置[J]. 太阳能学报, 2022, 43(3): 67-73.
LIU Z J, ZHU Y F, DAI C H, et al.Optimization of power system configuration for extended-range fuel cell hybrid tram[J]. Acta energiae solaris sinica, 2022, 43(3): 67-73.
[10] 王永红, 董日康, 武志斐. 基于模糊理论的燃料电池汽车能量管理策略[J]. 科技和产业, 2021, 21(6): 255-258.
WANG Y H, DONG R K, WU Z F.Fuel cell vehicle energy management strategy based on fuzzy theory[J]. Science technology and industry, 2021, 21(6): 255-258.
[11] 何洪文, 石曼, 曹剑飞, 等. 基于动态规划的再生制动能量管理策略[J]. 重庆理工大学学报(自然科学), 2021, 35(2): 74-80.
HE H W, SHI M, CAO J F, et al.Regenerative braking energy management strategy based on dynamic programming[J]. Journal of Chongqing University of Technology(natural science), 2021, 35(2): 74-80.
[12] 李岩, 袁弘宇, 于佳乔, 等. 遗传算法在优化问题中的应用综述[J]. 山东工业技术, 2019(12): 242-243, 180.
LI Y, YUAN H Y, YU J Q, et al.Review on the application of genetic algorithm in optimization problems[J]. Shandong industrial technology, 2019(12): 242-243, 180.

基金

国家自然科学基金(51775042)

PDF(1877 KB)

Accesses

Citation

Detail

段落导航
相关文章

/