风电机组主轴承座抗疲劳拓扑优化设计方法

陆飞宇, 张承婉, 龙凯, 陈卓, 陶涛, 刘杰

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 518-523.

PDF(2146 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2146 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 518-523. DOI: 10.19912/j.0254-0096.tynxb.2022-0853

风电机组主轴承座抗疲劳拓扑优化设计方法

  • 陆飞宇1, 张承婉1, 龙凯1, 陈卓2, 陶涛3, 刘杰4
作者信息 +

FATIGUE-RESISTANCE TOPOLOGY OPTIMIZATION METHOD FOR MAIN BEARING SEAT OF WIND TURBINES

  • Lu Feiyu1, Zhang Chengwan1, Long Kai1, Chen Zhuo2, Tao Tao3, Liu Jie4
Author information +
文章历史 +

摘要

为实现风电机组主轴承座抗疲劳轻量化设计,提出基于增广拉格朗日函数的抗疲劳拓扑优化方法。采用准静态法快速获取时序应力值,经过雨流计数得到累积疲劳损伤值。基于变密度法建立抗疲劳拓扑优化列式,为解决单元损伤约束方程数庞大的困难,借助增广拉格朗日函数将原拓扑优化问题转换为一系列无约束优化问题实现优化求解。基于商品化有限元软件二次开发实现抗疲劳拓扑优化功能,并在风电机组主轴承座轻量化设计中得到工程应用,证明了提出方法的可行性和适用性。

Abstract

A fatigue-resistance topology optimization (TO) method based on augmented Lagrange function was proposed, in order to achieve a lightweight design for wind turbine main bearing seats. The quasi-static method was employed to efficiently obtain the time-varying stress. Consequently, the cumulative fatigue damage was determined by rain-flow counting. Using variable density method, the fatigue-resistance topology optimization formula was established. To address the difficulty of a large number of constraint equations imposed on unit fatigue damage, the original topology optimization problem was converted into a sequence of unconstrained optimization problems by means of augmented Lagrange function. The fatigue-resistance topology optimization function was realized by implementing the secondary development of commercial finite element software. The software has been successfully applied in the lightweight design of the main bearing seats of wind turbines, demonstrating the practicability and applicability of the proposed method.

关键词

风电机组 / 结构优化 / 疲劳损伤 / 主轴承座 / 变密度法 / 拓扑优化

Key words

wind turbines / structural optimization / fatigue damage / main bearing seat / variable density method / topology optimization

引用本文

导出引用
陆飞宇, 张承婉, 龙凯, 陈卓, 陶涛, 刘杰. 风电机组主轴承座抗疲劳拓扑优化设计方法[J]. 太阳能学报. 2023, 44(8): 518-523 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0853
Lu Feiyu, Zhang Chengwan, Long Kai, Chen Zhuo, Tao Tao, Liu Jie. FATIGUE-RESISTANCE TOPOLOGY OPTIMIZATION METHOD FOR MAIN BEARING SEAT OF WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 518-523 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0853
中图分类号: TH12   

参考文献

[1] COLMENAR-SANTOS A, PERERA-PEREZ J, BORGE-DIEZ D.Offshore wind energy: a review of the current status, challenges and future development in Spain[J]. Renewable and sustainable energy reviews, 2016, 64: 1-18.
[2] KOH J H, NG E Y K. Downwind offshore wind turbines: opportunities, trends and technical challenges[J]. Renewable and sustainable energy reviews, 2016, 54: 797-808.
[3] WU X N, HU Y, LI Y, et al.Foundations of offshore wind turbines: a review[J]. Renewable and sustainable energy reviews, 2019, 104: 379-393.
[4] 林毅峰. 海上风电机组支撑结构与地基基础一体化分析设计[M]. 北京: 机械工业出版社, 2020.
LIN Y F.Integrated analysis and design for support structure and foundation of offshore wind turbine[M]. Beijing: China Machine Press, 2020.
[5] BENDSØE M P,KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer methods in applied mechanics and engineering, 1988, 71(2):197-224.
[6] DEATON J D, GRANDHI R V.A survey of structural and multidisciplinary continuum topology optimization: post 2000[J]. Structural and multidisciplinary optimization, 2014, 49: 1-38.
[7] SIGMUND O.EML webinar overview: topology optimization-status and perspective[J]. Extreme mechanics letters, 2020, 39: 100855.
[8] THOMAS H, ZHOU M, SCHRAMM U.Issues of commercial optimization software development[J]. Structural and multidisciplinary optimization, 2002, 23: 97-110.
[9] ZHOU M, PAGALDIPTI N, THOMAS H L, et al.An integrated approach to topology, sizing and shape optimization[J]. Structural and multidisciplinary optimization, 2004, 26: 308-317.
[10] TIAN X J, WANG Q Y, LIU G J, et al.Topology optimization design for offshore platform jacket structure[J]. Ocean engineering, 2019, 84: 38-50.
[11] TIAN X J, SUN X Y, LIU G J, et al.Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2021, 243:110084.
[12] LEE Y S, GONZALEZ J A, LEE J H, et al.Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable energy, 2016, 85: 1214-1225.
[13] 龙凯, 贾娇. 大型水平轴风力机塔筒涡激振动焊缝疲劳分析[J]. 太阳能学报, 2015, 36(10): 2455-2459.
LONG K, JIA J.Analysis of fatigue damage of tower of large scale horizontal axis wind turbine by wind-induced transverse vibration[J]. Acta energiae solaris sinica, 2015, 36(10): 2455-2459.
[14] 龙凯, 丁文杰, 陈卓, 等. 考虑螺栓疲劳损伤约束的法兰轻量化设计方法[J]. 太阳能学报, 2021, 42(9): 326-331.
LONG K, DING W J, CHEN Z, et al.Lightweight design method for tower flange subject to constraint on bolt fatigue damage[J]. Acta energiae solaris sinica, 2021, 42(9): 326-331.
[15] LE C, NORATO J, BRUNS T.Stress-based topology optimization for continua[J]. Structural and multidisciplinary optimization, 2010, 41(4): 605-620.
[16] LONG K, WANG X, LIU H L.Stress-constrained topology optimization of continuum structures subject to harmonic force excitation using sequential quadratic programming[J]. Structural and multidisciplinary optimization, 2019, 59(5): 1747-1759.
[17] HOLMBERG E, TORSTENFELT B, KLARBRING A. fatigue constrained topology optimization[J]. Structural and multidisciplinary optimization, 2014, 50(2): 207-219.
[18] JEONG S H, CHOI D H, YOON G H.Fatigue and static failure considerations using a topology optimization method[J]. Applied mathematical modelling, 2015, 39(3): 1137-1162.
[19] NABAKI K, SHEN J H, HUANG X D.Evolutionary topology optimization of continuum structures considering fatigue failure[J]. Material & design, 2019, 166: 107586.
[20] GAO X J, CAIVANO R, TRIDELLO A, et al.Innovative formulation for fatigue optimization based on material defects distribution and TopFat algorithm[J]. International journal of fatigue, 2021, 147: 106176.
[21] ZHANG S L, LE C, GAIN A L, et al.Fatigue-based topology optimization with non-proportional loads[J]. Computer methods in applied mechanics and engineering, 2019, 345: 805-825.
[22] CHEN Z, LONG K, WEN P, et al.Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage[J]. Advance in engineering and software, 2020, 150: 102924.
[23] WANG F W,LAZAROV B S,SIGMUND O, et al.On projection methods, convergence and robust formulations in topology optimization[J]. Structural and multidisciplinary optimization, 2011, 43: 767-784.
[24] SILVA G A, AAGE N, BECT A T, et al.Local versus global stress constraint strategies in topology optimization: a comparative study[J]. International journal for numerical methods in engineering, 2021, 122(21): 6003-6636.
[25] SENHORA F V, LONDONO O G, MENEZES I F M, et al. Topology optimization with local stress constraints: a stress aggregation-free approach[J]. Structural and multidisciplinary optimization, 2020, 62: 1639-2668.
[26] GL wind guideline: Guideline for the certification of wind turbines[S]. Hamburg: Germanischer Lloyd Wind Energie GmbH, 2010.

基金

国家重点研发计划项目(2022YFB4201302); 广东省基础与应用基础研究基金海上风电联合基金(2022A1515240057); 华能集团海上风电与智慧能源系统科技专项(HNKJ20-H88-01); 国家自然科学基金(12172095)

PDF(2146 KB)

Accesses

Citation

Detail

段落导航
相关文章

/