基于实际工程深水漂浮式光伏平台特征提出系泊对称布置方案,建立光伏平台与系泊结构耦合数值计算模型,通过对比验证计算模型的准确性。根据实测海洋环境风浪流条件,开展漂浮式光伏平台系泊结构全时域动力耦合计算分析,探究0°、45°与90°方向极端海况作用下光伏平台6个自由度运动响应及系泊结构张力响应。结果表明:光伏平台6个自由度运动均在最大波高发生时刻响应最大,0°方向下纵荡运动和90°方向下横摇运动最为显著;0°、45°和90°方向下迎浪面系泊缆张力最大,背浪面系泊缆张力响应相对较小;系泊缆张力达到最大时,0°、45°和90°方向下迎浪面系泊缆呈绷紧状,其余系泊缆呈松弛悬链线状,较好反映了系泊缆张力响应。
Abstract
Based on the characteristics of the deep-water floating photovoltaic platform in the practical engineering, a arrangement scheme plan is proposed, and a numerical calculation model of the photovoltaic platform and the mooring structure is established, and the accuracy of the calculation model is verified by comparison. According to the measured marine environment wind, wave, and current conditions, the full-time dynamic coupling calculation and analysis of the mooring structure for the floating photovoltaic platform are carried out to explore the motion response of the photovoltaic platform at six degrees of freedom and the tension response of the mooring structure under the extreme sea conditions in the 0°, 45°, and 90° directions. The results show that the motions of the six degrees of freedom of the photovoltaic platform all respond the most when the maximum wave height occurs, and the surge motion in the 0° direction and the roll motion in the 90° direction are the most significant; in the directions of 0°, 45°, and 90°, the mooring line tensions at the head sea side are the largest, and the tension responses of the mooring lines at the back swell are relatively small; when the tension responses of the mooring lines reach the maximum, the mooring lines in the direction of 0°, 45°, and 90° are taut, the other mooring lines show the relaxation catenary linear, which preferably reflects the tension response of the mooring lines.
关键词
漂浮式光伏平台 /
系泊结构 /
深水 /
动力响应 /
风浪流作用 /
耦合数值模型
Key words
floating photovoltaic platform /
mooring structure /
deep-water /
dynamic response /
effect of wind-ware-current /
coupling numerical model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] POPA B, VUTA L I, DUMITRAN G E, et al.FPV for sustainable electricity generation in a large European city[J]. Sustainability, 2021, 14(1): 349.
[2] CHOI Y K, CHOI W S, LEE J H.Empirical research on the efficiency of floating PV systems[J]. Science of advanced materials, 2016, 8(3): 681-685.
[3] SAHU A, YADAV N, SUDHAKAR K.Floating photovoltaic power plant: a review[J]. Renewable and sustainable energy reviews, 2016, 66: 815-824.
[4] DASH P, GUPTA N.Effect of temperature on power output from different commercially available photovoltaic modules[J]. International journal of engineering research and applications, 2015, 5(1): 148-151.
[5] TRAPANI K, REDÓN SANTAFÉ M. A review of floating photovoltaic installations: 2007-2013[J]. Progress in photovoltaics: research and applications, 2015, 23(4): 524-532.
[6] RANJBARAN P, YOUSEFI H, GHAREHPETIAN G B, et al.A review on floating photovoltaic (FPV) power generation units[J]. Renewable and sustainable energy reviews, 2019, 110: 332-347.
[7] 吴继亮, 梁甜, 糜文杰, 等. 水上漂浮式光伏电站的发展及应用前景分析[J]. 太阳能, 2019(12): 20-23.
WU J L, LIANG T, MI W J, et al.Development and application prospects analysis of floating PV power plants[J]. Solar energy, 2019(12): 20-23.
[8] CAZZANIGA R, CICU M, ROSA-CLOT M, et al.Floating photovoltaic plants: performance analysis and design solutions[J]. Renewable and sustainable energy reviews, 2018, 81: 1730-1741.
[9] 孔耀华, 肖福勤, 陈作钢, 等. 漂浮式光伏电站漂浮方阵流载荷数值计算研究[J]. 水动力学研究与进展(A辑), 2019, 34(2): 218-223.
KONG Y H, XIAO F Q, CHEN Z G, et al.Numerical research on current load of floating square array in floating PV power station[J]. Chinese journal of hydrodynamics, 2019, 34(2): 218-223.
[10] GORJIAN S, SHARON H, EBADI H, et al.Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems[J]. Journal of cleaner production, 2021, 278: 124285.
[11] 肖福勤, 陈作钢, 代燚, 等. 漂浮式光伏电站方阵环境载荷计算方法研究[J]. 工程力学, 2020, 37(3): 245-256.
XIAO F Q, CHEN Z G, DAI Y, et al.Numerical method study on environmental loads of floating photovoltaic power array[J]. Engineering mechanics, 2020, 37(3): 245-256.
[12] 郭军, 陈作钢, 肖福勤, 等. 光伏电站漂浮方阵波浪载荷数值分析研究[J]. 太阳能学报, 2021, 42(1): 1-6.
GUO J, CHEN Z G, XIAO F Q, et al.Numerical research on wave loads of floating photovoltalic power station[J]. Acta energiae solaris sinica, 2021, 42(1): 1-6.
[13] KIM S H, YOON S J, CHOI W.Design and construction of 1 MW class floating PV generation structural system using FRP members[J]. Energies, 2017, 10(8): 1142.
[14] 刘浩晨, 国振, 王立忠, 等. 漂浮式水上光伏电站锚泊系统设计方法[J]. 太阳能学报, 2019, 40(12): 3485-3492.
LIU H C, GUO Z, WANG L Z, et al.Design method for mooring system of floating photovoltaic system[J]. Acta energiae solaris sinica, 2019, 40(12): 3485-3492.
[15] 糜文杰, 吴继亮, 梁甜, 等. 漂浮光伏电站系泊系统设计及分析计算[J]. 电力勘测设计, 2019(11): 6-11.
MI W J, WU J L, LIANG T, et al.Design and analysis of mooring system for floating photovoltaic power station[J]. Electric power survey & design, 2019(11): 6-11.
[16] 孔耀华, 王磊, 陈作钢, 等. 漂浮式光伏电站漂浮方阵的锚泊计算研究[J]. 可再生能源, 2019, 37(10): 1434-1439.
KONG Y H, WANG L, CHEN Z G, et al.Numerical research on a mooring system of floating PV power station[J]. Renewable energy resources, 2019, 37(10): 1434-1439.
[17] YANG Y, BASHIR M, LI C, et al.Investigation on mooring breakage effects of a 5 MW barge-type floating offshore wind turbine using F2A[J]. Ocean engineering, 2021, 233: 108887.
[18] ZHANG L X, SHI W, KARIMIRAD M, et al.Second-order hydrodynamic effects on the response of three semisubmersible floating offshore wind turbines[J]. Ocean engineering, 2020, 207: 107371.
[19] GONG S F, XU P, BAO S, et al.Numerical modelling on dynamic behaviour of deepwater S-lay pipeline[J]. Ocean engineering, 2014, 88: 393-408.
[20] TCHEOU G.Non-linear dynamics of mooring lines[D]. Boston: Massachusetts Institute of Technology, 1997.
[21] Environmental conditions and environmental loads: DNVGL-RP-C205[S]. DNVGL, 2019.
[22] Amarican Petroleum Institute(API). API RP 2SK Design and analysis of stationkeeping systems for floating structures[S]. Washington: API Publishing Services, 2015.
基金
国家自然科学基金(51809048); 福建省自然科学基金(2022J01092)