提升新能源消纳含风险度量的输-储优化规划

程瑜, 朱瑾, 彭冬, 刘宏杨, 胡帅

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 504-513.

PDF(1888 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1888 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 504-513. DOI: 10.19912/j.0254-0096.tynxb.2022-0865

提升新能源消纳含风险度量的输-储优化规划

  • 程瑜1, 朱瑾1, 彭冬2, 刘宏杨2, 胡帅3
作者信息 +

OPTIMIZATION PLANNING OF TRANSMISSION LINE AND ENERGY STORAGE FOR CONSUMPTION CAPACITY IMPROVEMENT OF RENEWABLE ENERGY WITH RISK ASSESSMENT

  • Cheng Yu1, Zhu Jin1, Peng Dong2, Liu Hongyang2, Hu Shuai3
Author information +
文章历史 +

摘要

双碳战略目标下,输储协同优化规划有利于支撑新能源富集地区实现新能源高效经济汇聚外送。采用基于条件风险价值的投资组合优化模型,刻画输储规划方案在新能源出力与负荷需求不确定条件下的风险成本,计及网架结构和系统调峰对新能源本地消纳和外送的影响,针对新能源富集外送区域建立外送输电通道和储能的协调优化规划模型,并基于多日协调的场景法将含条件风险价值的输储随机规划模型转化为混合整数线性规划模型。算例验证了模型可度量不同风险厌恶程度对输储容量配比及储能布点优化规划方案的影响,有利于提升输储协调规划效率和经济性。

Abstract

Under the background of emission peak and carbon neutrality, the coordinated optimization planning of transmission line and energy storage is beneficial to the efficient and economical delivery of renewable energy. A portfolio optimization model based on conditional value at risk is used to describe the risk cost of transmission line and energy storage planning scheme under the uncertainty of renewable energy output and load demand.Thus, the coordinated optimization planning model of transmission line and energy storage is established for the renewable energy centralized delivery area, considering the effect of grid structure and power peak regulation on the local consumption and outside delivery of renewable energy. Based on multi-day coordination scenario analysis method, the stochastic programming model with conditional value at risk is transformed into a mixed integer linear programming model. The case study is presented to verify that the model performs well in measuring the influence of different risk aversion degrees on the optimal ratio of transmission line and energy storage capacity as well as the optimal energy storage site selection, which is conducive to the efficiency and economy improvement on the coordinated planning scheme of transmission line and energy storage.

关键词

新能源 / 输电线路 / 储能 / 风险度量 / 消纳 / 混合整数线性规划

Key words

new energy / transmission lines / energy storage / risk assessment / consumption / MILP

引用本文

导出引用
程瑜, 朱瑾, 彭冬, 刘宏杨, 胡帅. 提升新能源消纳含风险度量的输-储优化规划[J]. 太阳能学报. 2023, 44(10): 504-513 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0865
Cheng Yu, Zhu Jin, Peng Dong, Liu Hongyang, Hu Shuai. OPTIMIZATION PLANNING OF TRANSMISSION LINE AND ENERGY STORAGE FOR CONSUMPTION CAPACITY IMPROVEMENT OF RENEWABLE ENERGY WITH RISK ASSESSMENT[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 504-513 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0865
中图分类号: TM715   

参考文献

[1] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029-5040.
XUE Y S,LEI X,XUE F,et al.A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040.
[2] 张宏宇, 印永华, 申洪, 等. 大规模风电接入后的系统调峰充裕性评估[J]. 中国电机工程学报, 2011, 31(22): 26-31.
ZHANG H Y, YIN Y H, SHEN H, et al.Peak-load regulating adequacy evaluation associated with large-scale wind power integration[J]. Proceedings of the CSEE, 2011, 31(22): 26-31.
[3] 吴智泉, 贾纯超, 陈磊, 等. 新型电力系统中储能创新方向研究[J]. 太阳能学报, 2021, 42(10): 444-451.
WU Z Q, JIA C C, CHEN L, et al.Research on innovative direction of energy storage in new power system construction[J]. Acta energiae solaris sinica, 2021, 42(10): 444-451.
[4] 穆钢, 崔杨, 严干贵. 确定风电场群功率汇聚外送输电容量的静态综合优化方法[J]. 中国电机工程学报, 2011, 31(1): 15-19.
MU G, CUI Y, YAN G G.A static optimization method to determine integrated power transmission capacity of clustering wind farms[J]. Proceedings of the CSEE, 2011, 31(1): 15-19.
[5] 杨玉龙, 李军徽, 朱星旭. 基于储能系统提高风电外送能力的经济性研究[J]. 储能科学与技术, 2014, 3(1): 47-52.
YANG Y L, LI J H, ZHU X X.Economic assessment on the use of energy storage to improve clustered wind generation transmission[J]. Energy storage science and technology, 2014, 3(1): 47-52.
[6] 杨修宇, 段士伟, 安军, 等. 固定储能配比对风电基地外送输电容量的影响分析[J]. 太阳能学报, 2020, 41(8): 60-66.
YANG X Y, DUAN S W, AN J, et al.Influence of fixed energy storage proportion on wind power transmission capacity[J]. Acta energiae solaris sinica, 2020, 41(8): 60-66.
[7] 黄英, 刘宝柱, 王坤宇, 等. 考虑风电接纳能力的输储联合规划[J]. 电网技术, 2018, 42(5): 1480-1489.
HUANG Y, LIU B Z, WANG K Y, et al.Joint planning of energy storage and transmission network considering wind power accommodation capability[J]. Power system technology, 2018, 42(5): 1480-1489.
[8] 李佳明, 李文启, 鲁宗相, 等. 考虑系统灵活性的储能-输电线路扩展联合规划[J]. 中国电力, 2021, 54(4): 158-167.
LI J M, LI W Q, LU Z X, et al.Joint expansion planning of energy storage and transmission considering power system flexibility[J]. Electric power, 2021, 54(4): 158-167.
[9] 孙伟卿, 刘唯, 裴亮, 等. 高比例可再生能源背景下考虑储能系统价值的储-输多阶段联合规划[J]. 高电压技术, 2021, 47(3): 983-993.
SUN W Q, LIU W, PEI L, et al.Multistage energy storage-transmission network joint planning considering the system value of energy storage under the background of high penetration renewable energy[J]. High voltage engineering, 2021, 47(3): 983-993.
[10] 刘佳, 程浩忠, 刘盾盾, 等. 不确定因素耦合下输电网风险规划研究综述[J]. 电力自动化设备, 2018, 38(7): 11-20.
LIU J, CHENG H Z, LIU D D, et al.Review of risk-based transmission network planning under coupled uncertainties[J]. Electric power automation equipment, 2018, 38(7): 11-20.
[11] 叶健民, 蔡京陶, 王若愚, 等. 考虑风电场接入的输电网与储能扩展鲁棒规划[J]. 南方电网技术, 2019, 13(3): 25-32.
YE J M, CAI J T, WANG R Y, et al.Expansion robust planning of transmission network and energy storage considering wind farm integration[J]. Southern power system technology, 2019, 13(3): 25-32.
[12] 李昀昊, 王建学, 曹晓宇, 等. 面向风电场-储能-输电网联合规划的机会约束IGDT模型[J]. 电网技术, 2019, 43(10): 3715-3724.
LI J H, WANG J X, CAO X Y, et al.A chance-constrained IGDT model for joint planning of wind farm, energy storage and transmission[J]. Power system technology, 2019, 43(10): 3715-3724.
[13] 徐维军, 周平平, 李婷, 等. 基于CVaR和多元权值约束下的积极投资组合模型[J]. 系统管理学报, 2017, 26(2): 219-224.
XU W J, ZHOU P P, LI T, et al.Active portfolio model with CVaR and multiple weight constraints[J]. Journal of systems & management, 2017, 26(2): 219-224.
[14] KHALOIE H, VALLÉE F, LAI C S, et al. Day-ahead and intraday dispatch of an integrated biomass-concentrated solar system: a multi-objective risk-controlling approach[J]. IEEE transactions on power systems, 2022, 37(1): 701-714.
[15] 卫志农, 陈妤, 黄文进, 等. 考虑条件风险价值的虚拟电厂多电源容量优化配置模型[J]. 电力系统自动化, 2018, 42(4): 39-46.
WEI Z N, CHEN Y, HUANG W J, et al.Optimal allocation model for multi-energy capacity of virtual power plant considering conditional value-at-risk[J]. Automation of electric power systems, 2018, 42(4): 39-46.
[16] 史昭娣, 王伟胜, 黄越辉, 等. 多能互补发电系统储电和储热容量分层优化规划方法[J]. 电网技术, 2020, 44(9): 3263-3271.
SHI Z D, WANG W S, HUANG Y H, et al.Hierarchical optimization planning for electrical energy and heat storage capacity in multi-energy complementary generation system[J]. Power system technology, 2020, 44(9): 3263-3271.
[17] ROCKAFELLAR R T, URYASEV S.Optimization of conditional value-at-risk[J]. Journal of risk, 2000, 2(3): 21-24.
[18] 张清叶, 高岩. 基于CVaR投资组合优化问题的非光滑优化方法[J]. 中国管理科学, 2017, 25(10): 11-19.
ZHANG Q Y, GAO Y.A nonsmooth optimization method for portfolio optimization based on CVaR[J]. Chinese journal of management science, 2017, 25(10): 11-19.
[19] 陈碧云, 闭晚霞, 李欣桐, 等. 考虑风-光-荷联合时序场景的分布式电源接入容量规划策略[J]. 电网技术, 2018, 42(3): 755-761.
CHEN B Y, BI W X, LI X T, et al.Capacity planning strategies for distributed generation considering wind-photovoltaic-load joint time sequential scenarios[J]. Power system technology, 2018, 42(3): 755-761.
[20] DAVIES D L, BOULDIN D W. A Cluster Separation Measure[J]. IEEE transactions on pattern analysis and machine intelligence, 1979, PAMI-1(2): 224-227.
[21] 周开乐, 杨善林, 丁帅, 等. 聚类有效性研究综述[J]. 系统工程理论与实践, 2014, 34(9): 2417-2431.
ZHOU K L, YANG S L, DING S, et al.On cluster validation[J]. Systems engineering—theory & practice, 2014, 34(9): 2417-2431.

基金

国家电网有限公司管理科技项目(5100-202256003A-1-1-ZN)

PDF(1888 KB)

Accesses

Citation

Detail

段落导航
相关文章

/