基于PMU实测数据的DFIG风电场等值模型鲁棒性与适应性分析

张剑, 崔明建, 何怡刚

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 320-328.

PDF(1910 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1910 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 320-328. DOI: 10.19912/j.0254-0096.tynxb.2022-0867

基于PMU实测数据的DFIG风电场等值模型鲁棒性与适应性分析

  • 张剑1, 崔明建2, 何怡刚3
作者信息 +

ROBUSTNESS AND ADAPTABILITY ANALYSIS OF EQUIVALENT MODEL OF DFIG WIND FARM BASED ON MEASURED DATA OF PMU

  • Zhang Jian1, Cui Mingjian2, He Yigang3
Author information +
文章历史 +

摘要

对传统聚合方法无法解决风电场长期运行过程中产生的参数变化问题,该文基于实测数据建立双馈感应发电机(DFIG)风电场详细等值模型与初始化方法,分析时变参数的轨迹灵敏度,提出首先将非时变参数固定为聚合值,然后利用风电场公共并网点相量测量单元(PMU)数据针对时变参数采用基因学习粒子群(GLPSO)混合算法进行参数辨识的策略。采用WECC标准算例分析不同风速、尾流效应、部分风电机组离线、风速未知、不同短路故障位置与电压暂降深度情形下等值模型的鲁棒性与适应性。仿真算例表明所提出的参数辨识方法全局寻优能力远高于标准粒子群与遗传算法。而且,对于高灵敏度参数,参数辨识结果与真实值的最大偏差小于10%,远优于目前技术水平。

Abstract

In this paper, in view of the fact that the traditional aggregation method cannot solve the problem of parameters variation after long-term operation of wind farms, a detailed equivalent model of Doubly Fed Induction Generators (DFIGs) wind farm and initialization method are developed. The trajectory sensitivity of parameters is analyzed. Parameters identification strategy is proposed that the non-time-varying parameters are fixed as aggregated values, while the Genetic Learning Particle Swarm Optimization (GLPSO) hybrid algorithm is used to identify time-varying parameters based on Phasor Measurement Unit (PMU) data at the common interconnection point of wind farm. The robustness and adaptability of the equivalent model of DFIG wind farm under different wind speeds, wake effects, unknown wind speed, different short-circuit fault locations and voltage sags depth and some DFIGs off-line are analyzed. The simulation results using the Western Electricity Coordinating Council benchmark test system show that the global searching capability to find the optimal solution of the proposed method is much higher than that of canonical particle swarm optimization (PSO) and genetic algorithm (GA). Further, the maximum deriation between the identification results using the proposed method and the true values is less than 10% with high sensitivity parameters, which is much better than previous state-of-art work.

关键词

双馈风力机 / 风电场等值模型 / 参数辨识 / 轨迹灵敏度 / 配网阻抗 / 电力系统

Key words

DFIG / equivalent model of wind farm / parameter identification / trajectory sensitivity / impedance of distribution grid / power system

引用本文

导出引用
张剑, 崔明建, 何怡刚. 基于PMU实测数据的DFIG风电场等值模型鲁棒性与适应性分析[J]. 太阳能学报. 2023, 44(10): 320-328 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0867
Zhang Jian, Cui Mingjian, He Yigang. ROBUSTNESS AND ADAPTABILITY ANALYSIS OF EQUIVALENT MODEL OF DFIG WIND FARM BASED ON MEASURED DATA OF PMU[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 320-328 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0867
中图分类号: TM614   

参考文献

[1] LI W X, CHAO P P, LIANG X D, et al.An improved single-machine equivalent method of wind power plants by calibrating power recovery behaviors[J]. IEEE transactions on power systems, 2018, 33(4): 4371-4381.
[2] 张剑, 孙元章. 含有分布式电源的广义负荷建模研究[J]. 电网技术, 2011, 35(8): 41-46.
ZHANG J, SUN Y Z.Generalized load modeling considering wind generators connected to distribution network[J]. Power system technology, 2011, 35(8): 41-46.
[3] RUAN J Y, LU Z X, QIAO Y, et al.Transient stability of wind turbine adopting a generic model of DFIG and singularity-induced instability of generators/units with power-electronic interface[J]. IEEE transactions on energy conversion, 2015, 30(3): 1069-1080.
[4] GAUTAM D, VITTAL V, HARBOUR T.Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems[J]. IEEE transactions on power systems, 2009, 24(3): 1426-1434.
[5] RUAN J Y, LU Z X, QIAO Y, et al.Analysis on applicability problems of the aggregation-based representation of wind farms considering DFIG’s LVRT behaviors[J]. IEEE transactions on power systems, 2016, 31(6): 4953-4965.
[6] 董文凯, 杜文娟, 王海风. 用于风电场小干扰稳定性检验的降阶模式计算方法[J]. 电工技术学报, 2021, 36(7): 1468-1479.
DONG W K, DU W J, WANG H F.Reduced-order modal computation method for small-signal stability examination of a wind farm[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1468-1479.
[7] 张剑, 孙元章, 徐箭, 等. 基于同调性的电动机动态聚合方法[J]. 电力系统自动化, 2010, 34(5): 48-52.
ZHANG J, SUN Y Z, XU J, et al.A dynamic aggregation method for induction motors based on their coherent characteristics[J]. Automation of electric power systems, 2010, 34(5): 48-52.
[8] 陈鹏伟, 戚陈陈, 陈新, 等. 附加频率控制双馈风电场频率响应特性建模与参数辨识[J]. 电工技术学报, 2021, 36(15): 3293-3307.
CHEN P W, QI C C, CHEN X, et al.Frequency response modeling and parameter identification of doubly-fed wind farm with additional frequency control[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3293-3307.
[9] JALILI-MARANDI V, PAK L F, DINAVAHI V.Real-time simulation of grid-connected wind farms using physical aggregation[J]. IEEE transactions on industrial electronics, 2010, 57(9): 3010-3021.
[10] FERNANDEZ L M, JURADO F, SAENZ J R.Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines[J]. Renewable energy, 2008, 33(1), 129-140.
[11] LI W X, CHAO P P, LIANG X D, et al.A practical equivalent method for DFIG wind farms[J]. IEEE transactions on sustainable energy, 2018, 9(2): 610-620.
[12] ALI M, ILIE I S, MILANOVIC J V, et al.Wind farm model aggregation using probabilistic clustering[J]. IEEE transactions on power systems, 2013, 28(1): 309-316.
[13] ZOU J X, PENG C, XU H B, et al.A fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG[J]. IEEE transactions on energy conversion, 2015, 30(4): 1329-1337.
[14] WANG P, ZHANG Z Y, HUANG Q, et al.Improved wind farm aggregated modeling method for large-scale power system stability studies[J]. IEEE transactions on power systems, 2018, 33(6): 6332-6342.
[15] ZHANG Y C, MULJADI E, KOSTEREV D, et al.Wind power plant model validation using synchrophasor measurements at the point of interconnection[J]. IEEE transactions on sustainable energy, 2015, 6(3): 984-992.
[16] BROCHU J, LAROSE C, GAGNON R.Validation of single-and multiple-machine equivalents for modeling wind power plants[J]. IEEE transactions on energy conversion, 2011, 26(2): 532-541.
[17] LIN J, CHENG L.Model parameters identification method for wind farms based on wide-area trajectory sensitivities[J]. International journal of emerging electric power systems, 2010, 11(5): 112832373.
[18] CHENG X Y, LEE W J, SAHNI M, et al.Dynamic equivalent model development to improve the operation efficiency of wind farm[C]//2015 IEEE/IAS 51st Industrial & Commercial Power Systems Technical Conference (I&CPS). Calgary, AB, Canada, 2015: 1-9.
[19] WANG Y F, LU C, ZHU L P, et al.Comprehensive modeling and parameter identification of wind farms based on wide-area measurement systems[J]. Journal of modern power systems and clean energy, 2016, 4(3): 383-393.
[20] KUNJUMUHAMMED L P, PAL B C, OATES C, et al.The adequacy of the present practice in dynamic aggregated modeling of wind farm systems[J]. IEEE transactions on sustainable energy, 2016, 8(1): 23-32.
[21] KIM D E, SHARKAWI M A E. Dynamic equivalent model of wind power plant using parameter identification[J]. IEEE transactions on energy conversion, 2016, 31(1): 37-45.
[22] ZHOU Y H, ZHAO L, LEE W J.Robustness analysis of dynamic equivalent model of DFIG wind farm for stability study[C]//2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS). Niagara Falls, ON, Canada, 2018: 1-9.
[23] LI S H.Power flow modeling to doubly-fed induction generators (DFIGs) under power regulation[J]. IEEE transactions on power systems, 2013, 28(3): 3292-3301.
[24] 张剑, 何怡刚. 基于轨迹灵敏度分析的永磁直驱风电场等值模型参数辨识[J]. 电工技术学报, 2020, 35(15): 3303-3313.
ZHANG J, HE Y G.Parameters identification of equivalent model of permanent magnet synchronous generator wind farm based on analysis of trajectory sensitivity[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3303-3313.
[25] DELGARM N, SAJADI B, KOWSARY F, et al.Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)[J]. Applied energy, 2016, 170: 293-303.
[26] GONG Y J, LI J J, ZHOU Y C, et al.Genetic learning particle swarm optimization[J]. IEEE transactions on cybernetics, 2016, 46(10): 2277-2290.

基金

国家自然科学基金(52207130)

PDF(1910 KB)

Accesses

Citation

Detail

段落导航
相关文章

/