燃料电池船舶舱内氢气泄漏爆炸的数值模拟研究

袁裕鹏, 崔伟逸, 沈辉, 童亮, 邹智曦

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 540-549.

PDF(2939 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2939 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 540-549. DOI: 10.19912/j.0254-0096.tynxb.2022-0871

燃料电池船舶舱内氢气泄漏爆炸的数值模拟研究

  • 袁裕鹏1~3, 崔伟逸2,4, 沈辉1,2, 童亮1,2, 邹智曦5
作者信息 +

RESEARCH ON NUMERICAL SIMULATION OF HYDROGEN EXPLOSION IN COMPARTMENT OF FUEL CELL SHIP

  • Yuan Yupeng1-3, Cui Weiyi2,4, Shen Hui1,2, Tong Liang1,2, Zou Zhixi5
Author information +
文章历史 +

摘要

以燃料电池客船“Water-Go-Round”号为对象,利用FLUENT软件模拟燃料电池客船舱内管道发生氢气泄漏并引发爆炸的情况,研究不同舱室氢气点火爆炸事故的影响规律。结果表明:可燃氢气云被点燃后,爆炸超压波自点火位置向四周迅速传播,点火位置对超压波的分布影响较大;控制舱爆炸时,超压强度最大,对船体超压危害最大;乘客舱爆炸强度最小,但超压中心分布在乘客舱,超压对乘客造成的危害最大;船舶舱室燃烧火焰温度主要由可燃氢气云的分布决定,燃料电池舱的火焰衰减趋势基本相同;乘客舱受到的高温危害较低,船艏舱无燃烧火焰的高温危害。

Abstract

Taking a fuel cell passenger ship “Water Go Round” as the research object in this work, the process of hydrogen leakage and explosion of the pipeline in the compartment of this ship is simulated based on theFLUENT software platform. The effect of different hydrogen ignition positions on the accident is studied. The results show that the explosion shock wave propagates rapidly from the ignition position to the surrounding after the flammable hydrogen cloud is ignited, and the ignition position has great influence on the distribution of the shock wave. When the explosion position is in the control compartment, the overpressure strength is greatest, which leads to great damage to the hull of this ship. When the explosion position is in the passenger compartment, the explosion intensity is relatively low. However, considering the overpressure center is distributed in the passenger compartment, the overpressure causes great harm to people. The flame temperature in the ship compartment is mainly determined by the distribution of flammable hydrogen cloud. The flame attenuation trend in the fuel cell compartment is basically the same. The high temperature hazard to the passenger compartment is relatively low, and there is no high temperature hazard of combustion flame in the fore compartment.

关键词

氢气 / 燃料电池 / 泄漏 / 爆炸 / FLUENT / 数值模拟

Key words

hydrogen / fuel cell / leakage / explosion / FLUENT / numerical simulation

引用本文

导出引用
袁裕鹏, 崔伟逸, 沈辉, 童亮, 邹智曦. 燃料电池船舶舱内氢气泄漏爆炸的数值模拟研究[J]. 太阳能学报. 2022, 43(12): 540-549 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0871
Yuan Yupeng, Cui Weiyi, Shen Hui, Tong Liang, Zou Zhixi. RESEARCH ON NUMERICAL SIMULATION OF HYDROGEN EXPLOSION IN COMPARTMENT OF FUEL CELL SHIP[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 540-549 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0871
中图分类号: U665.13   

参考文献

[1] UNCTAD. Review of maritime transport2016[R]. ISSN 0566-7682, 2016.
[2] HERATH I, MADELEY D, BRADSHAW B.Hydrogen fuel cell taxi: safety analysis experiences[C]//4th IET International Conference on Systems Safety 2009, Incorporating the SaRS Annual Conference, IET, London, United Kingdom, 2009.
[3] LI F, YUAN Y P, YAN X P, et al.A study on numerical simulation of hydrogen leakage in cabin of fuel cell ship[J]. Journal of transport information and safety, 2017, 35(6): 60-66.
[4] SCHEFER R W, GROETHE M, HOUF W G, et al.Experimental evaluation of barrier walls for risk reduction of unintended hydrogen releases[J]. International journal of hydrogen energy, 2009, 34(3): 1590-1606.
[5] SHIRVILL C L, ROBERTS P, BUTLER J C, et a1. Characterisation of the hazards from jet releases of hydrogen[C]//2nd International Conference on Hydrogen Safety, San Sebastian, Spain, 2007.
[6] SATO Y, IWABUCHI H, GROETHE M, et al.Experiments on hydrogen deflagration[J]. Journal of power sources, 2006, 159(1): 144-148.
[7] VENETSANOS A G, BARALDI D, ADAMS P, et a1. CFD modelling of hydrogen release, dispersion and combustion for automotive scenarios[J]. Journal of loss prevention in the process industries, 2008, 21(2): 162-184.
[8] KIM B, HWANG K I.Numerical analysis of the effects of ship motion on hydrogen release and dispersion in an enclosed area[J]. Applied Sciences, 2022, 12(3): 1259.
[9] 余照, 袁杰红. 储氢罐泄漏扩散规律的数值仿真分析[J]. 轻工科技, 2008(8): 19-21.
YU Z, YUAN J H, Simulation and analasis on hydrogen tank leaking[J]. Light industry science and technology, 2008(8): 19-21.
[10] 周理. 高压氢气泄漏自燃现象的模拟[D]. 重庆: 重庆大学, 2014.
ZHOU L.Numerical study on spontaneous ignition process of pressurized hydrogen release[D]. Chongqing: Chongqing University, 2014.
[11] 李峰. 燃料电池船氢气系统设计与氢泄露数值模拟研究[D]. 武汉: 武汉理工大学, 2018: 35-50.
LI F.Study on the design of hydrogen system and numerical simulation of hydrogen leakage in fuel cell passenger ship[D]. Wuhan: Wuhan University of Technology, 2018: 35-50.
[12] 刘茂. 事故风险分析理论与方法[M]. 北京: 北京大学出版社, 2012: 61-62, 161-162.
LIU M.Theory and method of accident risk analysis[M]. Beijing: Peking University Press, 2012: 61-62, 161-162.
[13] ANSYS Inc.ANSYS Fluent 14.5 user’s guide[M]. Canonsburg: ANSYS Inc., 2012.
[14] OKUMURA M, TERUI K, LKADO A, et al.Investigation of wall stress development and packing ratio distribution in the metal hydride reactor[J]. International journal of hydrogen energy, 2012, 37(8): 6686-6693.
[15] 艾志久, 吴光武, 王其华, 等. 井喷失控气云爆炸的三维数值模拟[J]. 爆炸与冲击, 2010, 30(1): 96-100.
AI Z J, WU G W, WANG Q H, et al, Three-dimensional numerical simulation of gas cloud explosion induced by well blowout[J]. Explosion and shock waves, 2010, 30(1): 96-100.
[16] MONTIEL H, VÍLCHEZ J A, CASAL J, et al. Mathematical modelling of accidental gas releases[J]. Journal of hazardous materials, 1998, 59(2-3): 211-233.
[17] 焦明宇. 燃料电池卡车供氢系统氢气泄漏扩散仿真分析研究[D]. 北京: 北京交通大学, 2021.
JIAO M Y.Research on simulation analysis of hydrogen leakage and diffusion in hydrogen supply system of fuel cell truck[D]. Beijing: Beijing Jiaotong University, 2021.
[18] 李雪芳. 储氢系统意外氢气泄漏和扩散研究[D]. 北京: 清华大学, 2015.
LI X F.Dispersion of unintended subsonic and supersonic hydrogen releases from hydrogen storage systems[D]. Beijing: Tsinghua University, 2015.
[19] BLAYLOCK M L, PRATT J W, BRAN ANLEU G A, et al. Informing hazardous zones for on-board maritime hydrogen liquid and gas systems[R].SAND-2017-0585, 2018.

基金

国家重点研发计划(2021YFB2601603)

PDF(2939 KB)

Accesses

Citation

Detail

段落导航
相关文章

/