射流襟翼对翼型气动特性影响研究

马璐, 黄浩达, 张险峰, 雷肖, 张炜, 岳敏楠

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 346-352.

PDF(2243 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2243 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 346-352. DOI: 10.19912/j.0254-0096.tynxb.2022-0886

射流襟翼对翼型气动特性影响研究

  • 马璐1, 黄浩达2, 张险峰1, 雷肖1, 张炜1, 岳敏楠2,3
作者信息 +

EFFECT OF JET FLAP ON AERODYNAMIC CHARACTERISTICS OF AIRFOIL

  • Ma Lu1, Huang Haoda2, Zhang Xianfeng1, Lei Xiao1, Zhang Wei1, Yue Minnan2,3
Author information +
文章历史 +

摘要

通过施加射流技术于翼型尾缘可有效提高风力机气动性能,达到与格尼襟翼相近的气动力提升效果。该文基于NACA0018翼型尾缘射流开展研究,采用计算流体动力学方法对比分析尾缘射流与传统格尼襟翼对其气动特性的影响,并考虑不同射流出口宽度对翼型气动性能提升效果。结果表明:尾缘射流可有效提升翼型气动性能,同时降低小攻角下的阻力系数,且随射流动量系数增加,降阻效果更明显;尾缘射流可有效降低格尼襟翼引入的阻力增量,提高翼型升阻比;当射流动量系数一定时,尾缘射流翼型升阻比与转矩系数随射流出口宽度增加而减小;当射流速度为常数时,随射流出口宽度增加,翼型气动特性有明显提高。

Abstract

Through applying jet technology to the trailing edge of the airfoil, the aerodynamic performance of the wind turbine can be effectively improved, obtaining the similar effect with the Gurney flap in lift improvement. In this paper, based on the trailing edge jet of the NACA0018 airfoil. The comparison and the analysis on the aerodynamic performances, the effects of trailing edge jet and traditional Gurney flap on its aerodynamic characteristics are contrastively analyzed by the computational fluid dynamics(CFD) method. Moreover, the improvement effect of different jet outlet widths on aerodynamic performance of airfoil is considered. The results show that the trailing edge jet effectively improves the aerodynamic performance of the airfoil and reduce the drag coefficient at a small angle of attack. The drag reduction effect becomes more obvious with the increase of the momentum coefficient of the jet. And the trailing edge jet effectively reduce the drag increment introduced by gurney flaps and increase the lift-drag ratio of airfoil. When the jet momentum coefficient is constant, the lift-drag ratio and torque coefficient of the trailing edge jet airfoil decrease with the increase of the jet outlet width. When the jet velocity is constant, the aerodynamic characteristics of the airfoil are obviously improved with the increase of the jet outlet width.

关键词

风力机 / 格尼襟翼 / 射流 / 攻角 / 阻力系数 / 升阻比

Key words

wind turbines / Gurney flap / jets / angle of attack / drag coefficient / lift drag ratio

引用本文

导出引用
马璐, 黄浩达, 张险峰, 雷肖, 张炜, 岳敏楠. 射流襟翼对翼型气动特性影响研究[J]. 太阳能学报. 2023, 44(10): 346-352 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0886
Ma Lu, Huang Haoda, Zhang Xianfeng, Lei Xiao, Zhang Wei, Yue Minnan. EFFECT OF JET FLAP ON AERODYNAMIC CHARACTERISTICS OF AIRFOIL[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 346-352 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0886
中图分类号: TK83   

参考文献

[1] 张强, 缪维跑, 刘青松, 等. 垂直轴风力机变桨控制策略及气动性能影响研究[J]. 太阳能学报, 2022, 43(10): 296-303.
ZHANG Q, MIAO W P, LIU Q S, et al.Research on pitch control strategy and aerodynamic performance of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2022, 43(10): 296-303.
[2] 罗帅, 缪维跑, 刘青松, 等. 吸气控制策略对垂直轴风力机气动性能影响研究[J]. 太阳能学报, 2022, 43(5): 287-295.
LUO S, MIAO W P, LIU Q S, et al.Study on influence of suction control strategy on aerodynamic performance of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2022, 43(5): 287-295.
[3] 王培麟, 刘青松, 缪维跑, 等. 尾缘非定常射流襟翼对垂直轴风力机气动特性影响研究[J]. 太阳能学报,2022, 43(9): 242-250.
WANG P L, LIU Q S, MIAO W P, et al.Research on effect of trailing edge jet flap on aerodynamic characteristics of vertical axis wind turbine[J]. Acta energiae solaris sinica, 2022, 43(9): 242-250.
[4] WANG J J, LI Y C, CHOI K S.Gurney flap-lift enhancement, mechanisms and applications[J]. Progress in aerospace sciences, 2008, 44(1): 22-47.
[5] LIEBECK R H.Design of subsonic airfoils for high lift[J]. Journal of aircraft, 1978, 15(9): 547-561.
[6] JANG C, ROSS J, CUMMINGS R. Computational evaluation of an airfoil with a Gurney flap[C]//Proceedings of the 10th Applied Aerodynamics Conference. Palo Alto, CA, USA.1992: AIAA1992-2708.
[7] NEUHART D H, PENDERGRAFT O C.A water tunnel study of Gurney flaps[R]. NASA TM-4071, Washington, D. C. National Aeronautics and Space Administration, Scientific and technical information division, 1988.
[8] GIGUERE P, DUMAS G, LEMAY J.Gurney flap scaling for optimum lift-to-drag ratio[J]. AIAA journal, 1997, 35(12): 1888-1890.
[9] MYOSE R, HERON I, PAPADAKIS M. Effect of Gurney flaps on a NACA0011 airfoil[C]//Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA. 1996: AIAA1996-59.
[10] KENTFILED J A C, CLAELLE E J. The flow physics of the gurney flaps devices for improving turbine blade performance[J]. Wind engineering, 1993, 19(1): 24-34.
[11] CHANDRASEKHARA M S, MARTIN P B, TUNG C.Compressible dynamic stall performance of variable droop leading edge airfoil with a Gurney flap[J]. Journal of the American Helicopter Society, 2008, 53(1): 18.
[12] RHEE M. A computational study of an oscillating VR-12 airfoil with a Gurney flap[C]//Proceedings of the 22nd Applied Aerodynamics Conference and Exhibit. Providence, Rhode Island.2004: AIAA2004-5202.
[13] BIENIAWSKI S, KROO I.Flutter suppression using micro-trailing edge effectors[C]//Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Norfolk, Virginia. 2003: AIAA2003-1941.
[14] LEE H T, KROO I, BIENIAWSKI S. Flutter suppression for high aspect ratio flexible wings using microflaps[C]//Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,Materials Conference. Denver, Colorado.2002: AIAA2002-1717.
[15] YEN D, VAN DAM C, BRAEUCHLE F, et al. Active load control and lift enhancement using MEM translational tabs[C]//Proceedings of the Fluids2000 Conference and Exhibit. Denver, CO, USA. 2000: AIAA2000-2242.
[16] MEYER R, HAGE W, BECHERT D W, et al.Drag reduction on gurney flaps by three-dimensional modifications[J]. Journal of aircraft, 2006, 43(1): 132-140.
[17] FENG L H, CHOI K S, WANG J J.Flow control over an airfoil using virtual Gurney flaps[J]. Journal of fluid mechanics, 2015, 767: 595-626.
[18] TRAUB L W, AGARWAL G.Aerodynamic characteristics of a Gurney/jet flap at low Reynolds numbers[J]. Journal of aircraft, 2008, 45(2): 424-429.
[19] TRAUB L W, MILLER A C, REDINIOTIS O.Comparisons of a Gurney and jet-flap for hinge-less control[J]. Journal of aircraft, 2004, 41(2): 420-423.
[20] TREVELYAN C, ZAHLE F, MICHELSEN J A, et al.A computational comparison of standard and pneumatic Gurney flaps using CFD[C]//European wind Energy Conference and Exhibition, European wind Energy Association. Brussels, Belgium, 2004.
[21] TIMMER W A.Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018[J]. Wind engineering, 2008, 32(6): 525-537.
[22] 向斌, 缪维跑, 李春, 等. 动态格尼襟翼对垂直轴风力机性能的影响[J]. 中国机械工程, 2021, 32(2): 163-170.
XIANG B, MIAO W P, LI C, et al.Influences of dynamic Gurney flap on performance of vertical axis wind turbines[J]. China mechanical engineering, 2021, 32(2):163-170.
[23] HUANG D B, LI J D, LIU Y.Airfoil dynamic stall and aeroelastic analysis based on multi-frequency excitation using CFD method[J]. Procedia engineering, 2015, 99: 686-695.
[24] TSENG C C, CHENG Y E.Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages[J]. Journal of fluids and structures, 2015, 58: 291-318.
[25] GHARALI K, JOHNSON D A.Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies[J]. Applied energy, 2012, 93: 45-52.
[26] 罗帅, 缪维跑, 刘青松, 等. 基于吹吸结合射流的风力机翼型气动性能数值研究[J]. 中国电机工程学报, 2022, 42(15): 5607-5616.
LUO S, MIAO W P, LIU Q S, et al.Numerical study on aerodynamic performance of wind airfoil based on blow-suction combined jet[J]. Proceedings of the CSEE, 2022, 42(15): 5607-5616.
[27] JEFFREY D, ZHANG X, HURST D W.Aerodynamics of Gurney flaps on a single-element high-lift wing[J]. Journal of aircraft, 2000, 37(2): 295-301.

基金

国家自然科学基金(52106262; 52006148); 上海“科技创新行动计划”地方院校能力建设项目(19060502200); 中国长江三峡集团有限公司科研项目(NBWL20220145)

PDF(2243 KB)

Accesses

Citation

Detail

段落导航
相关文章

/