同源生物炭对蓝藻热解特性及气体产物的影响

宋卫军, 谢妤, 陈钱浩, 王祎楠

太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 358-365.

PDF(2133 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2133 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (1) : 358-365. DOI: 10.19912/j.0254-0096.tynxb.2022-0896

同源生物炭对蓝藻热解特性及气体产物的影响

  • 宋卫军, 谢妤, 陈钱浩, 王祎楠
作者信息 +

EFFECTS OF ORTHOLOGS BIOCHAR ON BIOCHAR FROM CYANOBACTERIA PYROLYSIS CHARACTERISTICS AND GAS PRODUCTS

  • Song Weijun, Xie Yu, Chen Qianhao, Wang Yi'nan
Author information +
文章历史 +

摘要

为探究蓝藻生物炭掺和对原料热解特性和释放气体产物的影响,以铜绿微囊藻(MA)为原料,基于热重红外联用技术(TG-FTIR)研究铜绿微囊藻生物炭(MAC)掺和前后混合样的热解特性与气体产物变化。结果表明,混合样品热解主要区间由322~434 ℃变为242~422 ℃,不仅温度区间发生偏移且温度范围由112 ℃拓宽至180 ℃,增加60.5%。热解过程中混合样的活化能表现为不同程度的升高,CH4、CO2和羰基类化合物等产物的红外吸光度有不同程度的变化。随着MAC制备温度的升高,混合样品的热解结束温度降低,最大失重速率基本不变,活化能由22.77 kJ/mol增至42.17 kJ/mol;掺和MAC400时芳香醛类、CH4的释放量增加,羰基化合物释放量减少,CO2含量在500 ℃以上出现明显的二次提升;掺和MAC600时芳香醛类、呋喃类、CH4和CO2的释放量减少。随着MAC掺和比例的增加,混合样品的热解结束温度升高,最大失重速率降低,活化能由22.77 kJ/mol增至36.93 kJ/mol。掺和比例为75%时热解释放气体中CO2减少,掺和比例为25%时,含羰基化合物、酸类、呋喃产生量降低。

Abstract

This study focused on the effects of doping in cyanobacterial biochar on the pyrolysis characteristics and gas products released from the raw material, the mixed samples were investigated by TG-FTIR technique based on Microcystis aeruginosa (MA) as the raw material and the changes of the pyrolysis characteristics and gas products before and after the doping of Microcystis aeruginosa biochar (MAC). The results showed that the main pyrolysis interval of the mixed samples widened from 322-434 ℃ to 242-422 ℃ and shifted, and the activation energy of the mixed samples showed different degrees of increase during the pyrolysis process, the infrared absorbance values of CH4, CO2, carbonyl compounds and other products varies in different degrees. With the increase of MAC preparation temperature, the burnout temperature of the mixture decreased, the maximum weight loss rate remained unchanged, and the activation energy increased from 22.77 kJ/mol to 42.17 kJ/mol. The release of aromatic aldehydes and CH4 increases and the release of carbonyl compounds decreases when MAC is blended at 400 ℃,the CO2 content shows a significant secondary increase at temperatures above 500 ℃. The aromatic aldehydes, furans, CH4 and CO2 decreased when MAC was blended at 600 ℃. As the doping ratio of MAC increased, the burnout temperature of the mixed samples increased, the maximum weight loss rate decreased, and the activation energy increased from 22.77 kJ/mol to 36.93 kJ/mol. The CO2 release from the pyrolysis gas decreased when the doping ratio was 75%, and the amount of carbonyl compounds, acids and furans produced decreased when the doping ratio was 25%.

关键词

热解 / 生物炭 / 微藻 / 热重红外联用技术(TG-FTIR)

Key words

pyrolysis / biochar / microalgae / TG-FTIR

引用本文

导出引用
宋卫军, 谢妤, 陈钱浩, 王祎楠. 同源生物炭对蓝藻热解特性及气体产物的影响[J]. 太阳能学报. 2024, 45(1): 358-365 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0896
Song Weijun, Xie Yu, Chen Qianhao, Wang Yi'nan. EFFECTS OF ORTHOLOGS BIOCHAR ON BIOCHAR FROM CYANOBACTERIA PYROLYSIS CHARACTERISTICS AND GAS PRODUCTS[J]. Acta Energiae Solaris Sinica. 2024, 45(1): 358-365 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0896
中图分类号: TK6    X71   

参考文献

[1] 叶元, 杨文杰, 郑志永, 等. 蓝藻泥热压滤深度脱水耦合制备磁性生物炭的中试工艺[J]. 环境工程学报, 2020, 14(11): 3162-3169.
YE Y, YANG W J, ZHENG Z Y, et al.Pilot-scale process of magnetic biochar preparation by deeply dewatered Cyanobacteria sludge with coupled thermal pressure filtration[J]. Chinese journal of environmental engineering, 2020, 14(11): 3162-3169.
[2] BILLER P, ROSS A B.Hydrothermal processing of algal biomass for the production of biofuels and chemicals[J]. Biofuels, 2012, 3(5): 603-623.
[3] FADL S E, ELSADANY A Y, EL-SHENAWY A M, et al. Efficacy of cyanobacterium Anabaena sp. as a feed supplement on productive performance and immune status in cultured Nile tilapia[J]. Aquaculture reports, 2020, 17: 100406.
[4] SIMRANJIT K, KANCHAN A, PRASANNA R, et al.Microbial inoculants as plant growth stimulating and soil nutrient availability enhancing options for cucumber under protected cultivation[J]. World journal of microbiology and biotechnology, 2019, 35(3): 51.
[5] YU K L, LAU B F, SHOW P L, et al.Recent developments on algal biochar production and characterization[J]. Bioresource technology, 2017, 246: 2-11.
[6] LIU P Y, RAO D A, ZOU L Y, et al.Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars[J]. Science of the total environment, 2021, 767: 145447.
[7] WANG J, JIANG J C, ZHONG Z P, et al.Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5[J]. Energy conversion and management, 2019, 196: 759-767.
[8] ZHENG Y W, TAO L, HUANG Y B, et al.Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst[J]. Journal of analytical and applied pyrolysis, 2019, 140: 355-366.
[9] CHEN W, LI K X, XIA M W, et al.Catalytic deoxygenation co-pyrolysis of bamboo wastes and microalgae with biochar catalyst[J]. Energy, 2018, 157: 472-482.
[10] ZHANG Y, DUAN D, LEI H, et al.Thermochemical conversion of biomass to liquid fuels and chemicals[M]. Cambridge: Royal Society of Chemistry, 2011.
[11] MA C T, GENG J G, ZHANG D, et al.Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil[J]. Journal of the energy institute, 2020, 93(1): 303-311.
[12] SANTOSA D M, ZHU C, AGBLEVOR F A, et al.In situ catalytic fast pyrolysis using red mud catalyst: impact of catalytic fast pyrolysis temperature and biomass feedstocks[J]. ACS sustainable chemistry & engineering, 2020, 8(13): 5156-5164.
[13] MÜSELLIM E, TAHIR M H, AHMAD M S, et al. Thermo kinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis[J]. Applied thermal engineering, 2018, 137: 54-61.
[14] LIANG F, WANG R J, XIANG H Z, et al.Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS[J]. Bioresource technology, 2018, 256: 53-60.
[15] 卫新来, 冯玲玲, 慈娟, 等. 蓝藻催化热解及其产物分析研究[J]. 生物学杂志, 2018, 35(2): 101-105.
WEI X L, FENG L L, CI J, et al.Study on catalytic pyrolysis and product analysis of algae[J]. Journal of biology, 2018, 35(2): 101-105.
[16] GB/T 28731—2012, 固体生物质燃料工业分析方法[S].
GB/T 28731—2021, Solid biomass fuel industry analysis method[S]
[17] REGO F, SOARES DIAS A P, CASQUILHO M, et al. Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry[J]. Biomass and bioenergy, 2019, 122: 375-380.
[18] 刘佳政, 牛文娟, 钟菲, 等. 不同类型秸秆生物炭的燃烧特性与动力学分析[J]. 太阳能学报, 2019, 40(6): 1647-1655.
LIU J Z, NIU W J, ZHONG F, et al.Combustion characteristics and kinetic analysis of different types of crop residue biochars[J]. Acta energiae solaris sinica, 2019, 40(6): 1647-1655.
[19] 梅秋红, 缪月秋, 张成武, 等. 铜绿微囊藻(Microcystic aeruginosa var.major)胞外酸性多糖的分离、纯化及其理化特性[J]. 湖泊科学, 2005, 17(4): 322-326.
MEI Q H, MIAO Y Q, ZHANG C W, et al.Preliminary studies on the isolation, purification and physicochemical properties of extracellular acidic polysaccharides from Microcystic aeruginosa var. major[J]. Journal of lake science, 2005, 17(4): 322-326.
[20] 王浚浩, 张雨, 杨优优, 等. 微藻种类对其热解质量损失规律和产物及动力学的影响[J]. 农业工程学报, 2018, 34(19): 239-247.
WANG J H, ZHANG Y, YANG Y Y, et al.Weight-loss characteristics, components of bio-oil and kinetics during pyrolysis from different types of microalgae[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(19): 239-247.
[21] AHMAD M, LEE S S, DOU X M, et al.Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource technology, 2012, 118: 536-544.
[22] 苏龙, 张海波, 程红艳, 等. 木耳菌糠生物炭对阳离子染料的吸附性能研究[J]. 中国环境科学, 2021, 41(2): 693-703.
SU L, ZHANG H B, CHENG H Y, et al.Study on adsorption properties of biochar derived from spent Auricularia auricula substrate for cationic dyes[J]. China environmental science, 2021, 41(2): 693-703.
[23] ANTAL M J, VARHEGYI G.Cellulose pyrolysis kinetics: the current state of knowledge[J]. Industrial & engineering chemistry research, 1995, 34(3): 703-717.
[24] MENG F R, YU J L, TAHMASEBI A, et al.Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace[J]. Energy & fuels, 2013, 27(6): 2923-2932.
[25] HALIM R, PAPACHRISTOU I, CHEN G Q, et al.The effect of cell disruption on the extraction of oil and protein from concentrated microalgae slurries[J]. Bioresource technology, 2022, 346: 126597.
[26] 谢琮, 周劲松. 木质纤维素生物质磷酸活化过程的TG-FTIR研究[J]. 能源工程, 2021(6):15-22.
XIE C, ZHOU J S.TG-FTIR study on the activation process of lignocellulosic biomass with phosphoric acid[J]. Energy engineering, 2021(6): 15-22.
[27] 张化腾, 姚小瑞, 高天元, 等. 三聚氰胺改性脲醛树脂泡沫保温材料性能研究[J]. 森林工程, 2018, 34(6): 32-37, 61.
ZHANG H T, YAO X R, GAO T Y, et al.Research on properties of melamine modified urea-formaldehyde foam[J]. Forest engineering, 2018, 34(6): 32-37, 61.
[28] 王梦瑶, 江龙, 沈彦峰, 等. 聚乳酸链端烷基链长度对聚乳酸结晶性及水蒸气透过性的影响[J]. 高分子学报, 2021, 52(10): 1334-1342.
WANG M Y, JIANG L, SHEN Y F, et al.Effect of the length of alkyl chain in the end on the crystallization and water vapor permeability of poly(L-lactide)[J]. Acta polymerica sinica, 2021, 52(10): 1334-1342.
[29] TIAN L H, SHEN B X, XU H, et al.Thermal behavior of waste tea pyrolysis by TG-FTIR analysis[J]. Energy, 2016, 103: 533-542.
[30] MARCILLA A, GÓMEZ-SIURANA A, GOMIS C, et al. Characterization of microalgal species through TGA/FTIR analysis: application to Nannochloropsis sp.[J]. Thermochimica acta, 2009, 484(1/2): 41-47.
[31] 张果, 岳先领, 杨婷, 等. 废弃香菇菌糠的热重-红外分析及热解动力学研究[J]. 食品研究与开发, 2021, 42(24): 1-7.
ZHANG G, YUE X L, YANG T, et al.Thermal pyrolysis characteristics and kinetics study of waste mushroom bran by TG-FTIR technique[J]. Food research and development, 2021, 42(24): 1-7.
[32] CAO J, XIAO G, XU X, et al.Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor[J]. Fuel processing technology, 2013, 106: 41-47.
[33] HE X F, YANG L, WU H J, et al.Characterization and pyrolysis behaviors of sunflower stalk and its hydrolysis residue[J]. Asia-Pacific journal of chemical engineering, 2016, 11(5): 803-811.
[34] WAN KHALIT W N A, ASIKIN-MIJAN N, MARLIZA T S, et al. One-pot decarboxylation and decarbonylation reaction of waste cooking oil over activated carbon supported nickel-zinc catalyst into diesel-like fuels[J]. Journal of analytical and applied pyrolysis, 2022, 164: 105505.
[35] YANG H P, YAN R, CHEN H P, et al.Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86: 1781-1788.
[36] IBRAHIM A F M, DANDAMUDI K P R, DENG S G, et al. Pyrolysis of hydrothermal liquefaction algal biochar for hydrogen production in a membrane reactor[J]. Fuel, 2020, 265: 116935.

基金

福建省南平市资源化学产业科技创新联合资助项目(N2020Z005); 福建省自然科学基金(2020J01417); 福建省大学生创新性 实验项目(S202010397033)

PDF(2133 KB)

Accesses

Citation

Detail

段落导航
相关文章

/