计及超短期预测误差的风储系统跟踪计划出力控制策略

郭凯杰, 耿光超, 江全元, 李熹宁, 王仁顺

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 326-333.

PDF(1700 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1700 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 326-333. DOI: 10.19912/j.0254-0096.tynxb.2022-0908

计及超短期预测误差的风储系统跟踪计划出力控制策略

  • 郭凯杰1, 耿光超2, 江全元2, 李熹宁2, 王仁顺2
作者信息 +

OUTPUT CONTROL STRATEGY OF WIND STORAGE SYSTEM TRACKING PLAN CONSIDERING ULTRA SHORT TERM PREDICTION ERROR

  • Guo Kaijie1, Geng Guangchao2, Jiang Quanyuan2, Li Xining2, Wang Renshun2
Author information +
文章历史 +

摘要

在计划跟踪模式下,为最大化风储系统出力的经济效益,提出风储系统的协调控制方法。首先,基于超短期功率预测,以风电场总收益最大为目标,建立风储系统跟踪计划出力的控制模型;然后,利用超短期功率预测数据和历史实际功率数据,建立基于小波变换和序列到序列(sequence to sequence, seq2seq)的超短期预测功率修正模型,对超短期功率预测数据进行误差修正;最后,将基于超短期功率预测的计划跟踪模型与超短期预测误差修正模型结合,提出一种计及超短期预测误差的风储系统跟踪计划出力的控制策略。仿真结果表明:所提策略能显著提高风电计划跟踪精度和风储系统运行经济性、促进风电的消纳。

Abstract

In plan tracking mode, a coordinated control method for the wind storage system is proposed to maximize the economic benefit. Firstly, a wind-storage system plan tracking control model is established based on ultra-short-term power forecast with the objective function of maximizing the total operation profits. Then, an ultra-short-term power prediction correction model is established based on wavelet transform and Sequence to Sequence (seq2seq). Ultra-short-term power prediction data and historical actual power data are used to correct the power prediction error. Finally, the plan tracking control model and the ultra-short-term prediction error correction model are combined with each other, and then a plan tracking control strategy for wind-storage system is proposed, considering the ultra-short-term forecast error. The simulation results show that the proposed strategy can significantly improve the tracking accuracy of wind power schedule, which increases the operation economy of the wind-storage system and promotes the renewable energy consumption.

关键词

风电 / 储能 / 误差修正 / 发电计划跟踪 / 滚动优化

Key words

wind power / energy storage / error correction / generation schedule tracking / rolling optimization

引用本文

导出引用
郭凯杰, 耿光超, 江全元, 李熹宁, 王仁顺. 计及超短期预测误差的风储系统跟踪计划出力控制策略[J]. 太阳能学报. 2023, 44(2): 326-333 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0908
Guo Kaijie, Geng Guangchao, Jiang Quanyuan, Li Xining, Wang Renshun. OUTPUT CONTROL STRATEGY OF WIND STORAGE SYSTEM TRACKING PLAN CONSIDERING ULTRA SHORT TERM PREDICTION ERROR[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 326-333 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0908
中图分类号: TM614   

参考文献

[1] 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36(23): 6315-6326.
PENG X S, XIONG L, WEN J Y, et al.A summary of the state of the art for short-term and utra-short-term wind power prediction of regions[J]. Proceedings of the CSEE,2016, 36(23): 6315-6326.
[2] 孙泽伦, 陈洁, 闫亚岭, 等. 基于混合储能平抑风电波动的双堆自循环协调控制[J]. 太阳能学报, 2021, 42(4): 125-132.
SUN Z L, CHEN J, YAN Y L, et al.Coordination control of double reactors self-circulation based on hybrid energy storage for wind power fluctuation suppression[J]. Acta energiae solaris sinica, 2021, 42(4): 125-132.
[3] SHI J, LEE W J,LIU X F, et al.Generation scheduling optimization of wind-energy storage system based on wind power output fluctuation features[J]. IEEE transactions on industry applications, 2018, 54(1): 10-17.
[4] 魏东辉, 赵清华, 于舜尧, 等. 一种新型双电池风力发电储能系统及控制策略[J]. 太阳能学报, 2021, 42(3):259-267.
WEI D H,ZHAO Q H, YU S Y, et al.A novel dual-battery energy storage system and control strategy for wind power application[J]. Acta energiae solaris sinica, 2021,42(3): 259-267.
[5] LIU M, QUILUMBA F L, LEE W J.Dispatch scheduling for a wind farm with hybrid energy storage based on wind and LMP forecasting[J]. IEEE transactions on industry applications, 2015, 51(3): 1970-1977.
[6] 王泽爽, 陈嘉俊, 朱建全, 等. 计及循环寿命的储能优化配置与运营策略[J]. 电力自动化设备, 2021, 41(10): 75-81.
WANG Z S, CHEN J J, ZHU J Q, et al.Optimal configuration and operation strategy of energy storage considering cycle life[J]. Electric power automation equipment, 2021, 41(10): 75-81.
[7] 刘世林, 禹威威, 姚伟. 用于风电场发电计划跟踪的复合储能控制策略[J]. 太阳能学报, 2018, 39(4): 1060-1068.
LIU S L, YU W W, YAO W.Control strategy of composite energy storage for wind farm power generation schedule tracking[J]. Acta energiae solaris sinica, 2018, 39(4): 1060-1068.
[8] 杨婷婷, 李相俊, 齐磊, 等. 基于机会约束规划的储能系统跟踪光伏发电计划出力控制方法[J]. 电力建设, 2016, 37(8): 115-121.
YANG T T, LI X J,QI L, et al.Energy storage system tracking PV power generation planning output control method based on opportunity constrained programming[J]. Electric power construction, 2016, 37(8): 115-121.
[9] 李滨, 李倍存, 陈碧云. 含超前控制的风储系统滚动最优控制策[J]. 电力系统自动化,2019, 43(4): 25-32.
LI B, LI B C, CHEN B Y.Rolling optimal control strategy with lead control for wind power and energy storage systems[J]. Automation of electric power systems, 2019, 43(4):25-32.
[10] 李滨, 邓有雄, 陈碧云. 含超短期风功率预测增强处理的风储系统超前滚动优化控制策略[J]. 电网技术, 2021, 45(6): 2280-2287.
LI B, DENG Y X, CHEN B Y.Advanced rolling optimization control strategy for wind storage system with enhanced ultra-short-term wind power prediction[J]. Power system technology, 2021, 45(6): 2280-2287.
[11] 罗煜, 黄梅, 鲍谚, 等. 基于储能SOC 优化控制的风储电站实时跟踪发电计划控制策略[J]. 电工技术学报, 2016, 31(增刊1): 214-220.
LUO Y, HUANG M, BAO Y, et al.Tracking power generation real-time schedule strategy for wind power and battery energy storage combined system based on SOC optimal control of battery energy storage[J]. Transactions of China Electrotechnical Society, 2016, 31(S1): 214-220.
[12] 戚永志, 刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报, 2014, 29(8): 265-273.
QI Y Z,LIU Y T.Output power rolling optimization and real-time control in wind-photovoltaic-storage hybrid system[J]. Transactions of China Electrotechnical Society,2014, 29(8): 265-273.
[13] 闫鹤鸣, 李相俊, 麻秀范, 等. 基于超短期风电预测功率的储能系统跟踪风电计划出力控制方法[J]. 电网技术, 2015, 39(2): 432-439.
YAN H M, LI X J, MA X F, et al.Wind power output schedule tracking control method of energy storage system based on ultra-shortterm wind power prediction[J]. Power system technology, 2015, 39(2): 432-439.
[14] 叶林, 任成, 赵永宁, 等. 超短期风电功率预测误差数值特性分层分析方法[J]. 中国电机工程学报, 2016, 36(3): 692-700.
YE L,REN C, ZHAO Y N, et al.Stratification analysis approach of numerical characteristics for ultra-short term wind power forecasting error[J]. Proceedings of the CSEE,2016, 36(3): 692-700.
[15] 刘杰, 陈雪梅, 陆超, 等. 基于数据统计特性考虑误差修正的两阶段光伏功率预测[J]. 电网技术, 2020, 44(8): 2891-2897.
LIU J, CHEN X M, LU C, et al.Two-stage photovoltaic power forecasting and error correction method based on statistical characteristics of data[J]. Power system technology, 2020, 44(8): 2891-2897.
[16] SAROHA S, AGGARWAL S K.Wind power forecasting using wavelet transforms and neural networks with tapped delay[J]. CSEE journal of power and energy systems, 2018, 4(2): 197-209.
[17] YE L, DAI B H, PEI M, et al.Combined approach for short-term wind power forecasting based on wave division and seq2seq model using deep learning[J]. IEEE transactions on industry applications, 2022, 58(2): 2586-2596.
[18] 杨水丽, 李建林, 惠东, 等. 用于跟踪风电场计划出力的电池储能系统容量优化配置[J]. 电网技术, 2014, 38(6): 1485-1491.
YANG S L, LI J L, HUI D, et al.Optimal capacity configuration of battery energy storage system to track planned output of wind farm[J]. Power system technology,2014, 38(6): 1485-1491.
[19] 高飞, 杨凯, 惠东, 等. 储能用磷酸铁锂电池循环寿命的能量分析[J]. 中国电机工程学报, 2013, 33(5): 41-45.
GAO F, YANG K, HUI D, et al.Cycle-life energy analysis of LiFePO4 batteries for energy storage[J]. Proceedings of the CSEE, 2013, 33(5): 41-45.
[20] 徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40(12): 10-18.
XU R C, ZHANG J T, LIU M Y, et al.Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced technology of electrical engineering and energy, 2021, 40(12): 10-18.

基金

国家自然科学基金(52177120)

PDF(1700 KB)

Accesses

Citation

Detail

段落导航
相关文章

/