海上风电裙式吸力基础水平变幅非对称循环承载特性

李大勇, 黄凌昰, 吴宇旗, 张景睿

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 391-399.

PDF(4169 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4169 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 391-399. DOI: 10.19912/j.0254-0096.tynxb.2022-0918

海上风电裙式吸力基础水平变幅非对称循环承载特性

  • 李大勇1,2, 黄凌昰1, 吴宇旗2, 张景睿1
作者信息 +

BEARING BEHAVIORS OF MODIFIED SUCTION CAISSON UNDER HORIZONTAL VARIABLE AMPLITUDE AND ASYMMETRICAL CYCLIC LOADS FOR OFFSHORE WIND TURBINES

  • Li Dayong1,2, Huang Lingxia1, Wu Yuqi2, Zhang Jingrui1
Author information +
文章历史 +

摘要

针对海上风电在深海区域所受风、波浪等循环荷载作用特征,进行裙式吸力基础水平非对称循环加载模型试验,探究非对称循环荷载幅值大小、循环次序和对称性等因素对其累积位移及转角变化的影响规律。结果表明:逐阶增大的变幅循环加载时,裙式吸力基础在幅值比低、循环次数少(Δζb=0.1,N=500)的情况下产生的累积位移和转角大于幅值比高、循环次数多(Δζb=0.2,N=1000)的情况;非对称循环加载(ζc=-0.3)时,裙式吸力基础的累积位移与转角较对称加载时呈增长趋势;完全双向加载(ζc=-1.0)时,吸力基础的累积位移与转角在变方向后相比单向循环加载的情况下降1/3。相同变幅和非对称加载情况下,裙式吸力基础的累积位移和转角仅为传统吸力基础的50%。

Abstract

A series of horizontal cyclic loading (resulted from wind and waves in deep sea) model tests on modified suction caissons (MSCs) are conducted under variable amplitude and asymmetrical cyclic loads. The factors concerned with cumulative displacement and rotation, such as amplitude, number of cycles, cyclic order, asymmetry (two-way) are discussed. The results show that the cumulative displacement and rotation of MSCs with a small amplitude increment and number of cycles (Δζb=0.1, N=500) are greater than that with a larger amplitude increment and number of cycles (Δζb=0.2, N=1000) under progressively increased cyclic loading; under asymmetric loading (ζc=-0.3), the cumulative displacement and rotation of MSCs tend to increase compared with that under symmetric loading; under fully two-way loading (ζc=-1.0), the cumulative displacement and rotation of MSCs decrease by 1/3 compared with that under unidirectional cyclic loading after changing the direction. The cumulative displacement and rotation of MSCs are 50% of regular suction caissons (RSCs) under variable amplitude and asymmetrical cyclic loading.

关键词

海上风电 / 循环荷载 / 沉箱 / 非对称循环 / 累积转角

Key words

offshore wind power / cyclic loads / caissons / asymmetric cyclic loading / cumulative rotation angle

引用本文

导出引用
李大勇, 黄凌昰, 吴宇旗, 张景睿. 海上风电裙式吸力基础水平变幅非对称循环承载特性[J]. 太阳能学报. 2023, 44(10): 391-399 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0918
Li Dayong, Huang Lingxia, Wu Yuqi, Zhang Jingrui. BEARING BEHAVIORS OF MODIFIED SUCTION CAISSON UNDER HORIZONTAL VARIABLE AMPLITUDE AND ASYMMETRICAL CYCLIC LOADS FOR OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 391-399 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0918
中图分类号: P754   

参考文献

[1] 黄玲玲, 李锁, 符杨, 等. 基于风电机组状态的超短期海上风电功率预测[J]. 太阳能学报, 2022, 43(8): 391-398.
HUANG L L, LI S, FU Y, et al.Ultra-short term offshore wind power prediction based on condition-assessment of wind turbines[J]. Acta energiae solaris sinica, 2022, 43(8): 391-398.
[2] 姚钢, 杨浩猛, 周荔丹, 等. 大容量海上风电机组发展现状及关键技术[J]. 电力系统自动化, 2021, 45(21): 33-47.
YAO G, YANG H M, ZHOU L D, et al.Development status and key technologies of large-capacity offshore wind turbines[J]. Automation of electric power systems, 2021, 45(21): 33-47.
[3] 水电水利规划设计总院. 中国可再生能源发展报告[M]. 北京: 中国水利水电出版社, 2021.
China Renewable Energy Engineering Institute. China renewable energy development report[M]. Beijing: China Water & Power Press, 2021.
[4] 许成顺, 孙毅龙, 翟恩地, 等. 海上风电单桩基础自振频率及参数影响分析[J]. 太阳能学报, 2020, 41(12): 297-304.
XU C S, SUN Y L, ZHAI E D, et al.Offshore turbine monopile foundation natural frequency and parameter impact analysis[J]. Acta energiae solaris sinica, 2020, 41(12): 297-304.
[5] DNV-OS-j101-2015, Design of offshore wind turbine structures[S].
[6] FENG F.Design and analysis of tall and complex structures[M]. Oxford: Elsevier, 2018: 251-293.
[7] MEYER V.Cyclic soil parameters for offshore foundation design[C]//3rd International Symposium on Frontiers in Offshore Geotechnics (ISFOG). Oslo, Norway: NGI, 2015: 5-82.
[8] 李大勇, 冯凌云, 郭彦雪, 等. 裙式吸力基础水平承载数值分析[J]. 岩土工程学报, 2013, 35(增刊1): 33-38.
LI D Y, FENG L Y, GUO Y X, et al.Numerical analysis of lateral bearing behaviors of skirted suction caissons[J]. Chinese journal of geotechnical engineering, 2013, 35(S1): 33-38.
[9] LI D Y, ZHANG Y K, FENG L Y, et al.Capacity of modified suction caissons in marine sand under static horizontal loading[J]. Ocean engineering, 2015, 102: 1-16.
[10] 李大勇, 王梅, 刘小丽. 离岸裙式吸力基础在砂土地基中沉贯性研究[J]. 海洋工程, 2011, 29(1): 111-115, 148.
LI D Y, WANG M, LIU X L.Behavior of installation of offshore skirted suction foundation in sand[J]. The ocean engineering, 2011, 29(1): 111-115, 148.
[11] WICHTMANN T, NIEMUNIS A, TRIANTAFYLLIDIS T.Towards the FE prediction of permanent deformations of offshore wind power plant foundations using a high-cycle accumulation model[C]//Frontiers in Offshore Geotechnics Ⅱ. Perth, Australia: COFS, 2010: 635-640.
[12] ACHMUS M, KUO Y S, ABDEL-RAHMAN K.Behavior of monopile foundations under cyclic lateral load[J]. Computers and geotechnics, 2009, 36(5): 725-735.
[13] ZHU F Y, O’LOUGHLIN C D, BIENEN B, et al. The response of suction caissons to long-term lateral cyclic loading in single-layer and layered seabeds[J]. Geotechnique, 2018, 68(8): 729-741.
[14] ABADIE C N, BYRNE B W, HOULSBY G T.Rigid pile response to cyclic lateral loading: laboratory tests[J]. Géotechnique, 2019, 69(10): 863-876.
[15] FOGLIA A.Bucket foundations under lateral cyclic loading[D]. Aalborg: Aalborg University, 2015.
[16] NIELSEN S D, IBSEN L B, NIELSEN B N.Response of cyclic-loaded bucket foundations in saturated dense sand[J]. Journal of geotechnical and geoenvironmental engineering, 2017, 143(11): 04017086.
[17] LIN S S, LIAO J C.Permanent strains of piles in sand due to cyclic lateral loads[J]. Journal of geotechnical and geoenvironmental engineering, 1999, 125(9): 798-802.
[18] BYRNE B W, HOULSBY G T.Experimental investigations of the cyclic response of suction caissons in sand[C]//Offshore Technology Conference. Houston, TX, USA, 2000: 1-9.
[19] LEBLANC C, HOULSBY G T, BYRNE B W.Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90.
[20] WANG L Z, WANG H, ZHU B, et al.Comparison of monotonic and cyclic lateral response between monopod and tripod bucket foundations in medium dense sand[J]. Ocean engineering, 2018, 155: 88-105.
[21] ABADIE C, BYRNE B, LEVY-PAING S.Model pile response to multi-amplitude cyclic lateral loading in cohesionless soils[C]//3rd International Symposium on Frontiers in Offshore Geotechnics (ISFOG). Oslo, Norway: NGI, 2015: 681-686.
[22] ZHU B, BYRNE B W, HOULSBY G T.Long-term lateral cyclic response of suction caisson foundations in sand[J]. Journal of geotechnical and geoenvironmental engineering, 2013, 139(1): 73-83.
[23] WANG X Y, ZHANG P Y, DING H Y, et al.Experimental study on wide-shallow composite bucket foundation for offshore wind turbine under cyclic loading[J]. Marine georesources & geotechnology, 2019, 37(1): 1-13.
[24] WANG S F, LARSEN T J.Permanent accumulated rotation of an offshore monopile wind turbine in sand during a storm[J]. Ocean engineering, 2019, 188: 106340.
[25] LEBLANC C, BYRNE B W, HOULSBY G T.Response of stiff piles to random two-way lateral loading[J]. Geotechnique, 2010, 60(9): 715-721.
[26] 翟恩地, 徐海滨, 郭胜山, 等. 响水海上风电钢管桩基础水平承载特性对比研究[J]. 太阳能学报, 2019, 40(3): 681-686.
ZHAI E D, XU H B,GUO S S, et al.Comparative study on horizontal bearing capacity of steel pipe pile for Xiangshui offshore wind farm[J]. Acta energiae solaris sinica, 2019, 40(3): 681-686.

基金

国家自然科学基金(51879044); 自主创新科研计划(22CX06021A); 青岛博士后应用研究项目(qdyy20210091)

PDF(4169 KB)

Accesses

Citation

Detail

段落导航
相关文章

/