基于统一变桨和独立变桨的浮式风力机试验研究

朱德政, 温斌荣, 田新亮, 彭志科, 叶小嵘

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 400-406.

PDF(2677 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2677 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 400-406. DOI: 10.19912/j.0254-0096.tynxb.2022-0920

基于统一变桨和独立变桨的浮式风力机试验研究

  • 朱德政1, 温斌荣1,2, 田新亮1,2, 彭志科3, 叶小嵘4
作者信息 +

EXPERIMENTAL STUDY ON COLLECTIVE AND INDIVIDUAL PITCH CONTROL OF FLOATING WIND TURBINES

  • Zhu Dezheng1, Wen Binrong1,2, Tian Xinliang1,2, Peng Zhike3, Ye Xiaorong4
Author information +
文章历史 +

摘要

根据独立变桨控制(IBP)策略,开发一套基于空间连杆机构的风力机独立变桨控制系统,搭建计及独立变桨控制的浮式风力机(FWT)一体化试验系统,研究统一变桨控制(CBP)和独立变桨控制下的浮式风力机动力学响应特性。结果表明:相较于统一变桨控制策略,独立变桨能有效减小浮式平台纵摇、降低风力机塔顶推力和塔底弯矩等结构载荷,在所研究的工况下减载效果可达10%以上;但同时独立变桨控制也会加剧平台纵摇波动和结构动态载荷,可能引起结构的疲劳损伤。

Abstract

An individual blade pitch controller(IBP) is designed and manufactured for a floating wind turbine(FWT) model. An integrated experimental apparatus of FWT with IBP is established. Extensive tests are conducted to evaluate the performance of the proposed IBP, with collective blade pitch control(CBP) as a reference. The mechanical response characteristics of floating wind turbine under collective pitch control and independent pitch control are studied. The results show that the IBP can effectively reduce the mean values of platform pitch, tower top thrust and tower base bending moment, and the load reduction can reach more than 10% under the conditions studied in this paper. However, the IBP increases the fluctuations of platform motions and structural loads, which may cause fatigue damage to the structure.

关键词

浮式风力机 / 变桨控制 / 模型试验 / 独立变桨控制

Key words

floating wind turbines / blade pitch control / model test / individual blade pitch control

引用本文

导出引用
朱德政, 温斌荣, 田新亮, 彭志科, 叶小嵘. 基于统一变桨和独立变桨的浮式风力机试验研究[J]. 太阳能学报. 2023, 44(10): 400-406 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0920
Zhu Dezheng, Wen Binrong, Tian Xinliang, Peng Zhike, Ye Xiaorong. EXPERIMENTAL STUDY ON COLLECTIVE AND INDIVIDUAL PITCH CONTROL OF FLOATING WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 400-406 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0920
中图分类号: TK83   

参考文献

[1] 余万, 丁勤卫, 李春, 等. 海上浮式风力机变桨距控制研究[J]. 太阳能学报, 2021, 42(1): 143-148.
YU W, DING Q W, LI C, et al.Research on pitch control of floating offshore wind turbine[J]. Acta energiae solaris sinica, 2021, 42(1): 143-148.
[2] 袁剑平, 毛鸿飞, 潘新祥, 等. 海上浮式风机研究现状展望: 基于南海海域[J]. 广东海洋大学学报, 2020, 40(5): 133-138.
YUAN J P, MAO H F, PAN X X, et al.Research situation and the prospect of floating wind-turbine in the South China Sea[J]. Journal of Guangdong Ocean University, 2020, 40(5): 133-138.
[3] Global Wind Energy Council. Global wind report 2021[R]. Brussels: GWEC, 2021.
[4] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159.
LIU J Z, MA L F, WANG Q H, et al.Offshore wind power supports China’s energy transition[J]. Strategic study of CAE, 2021, 23(1): 149-159.
[5] BOSSANYI E A.Individual blade pitch control for load reduction[J]. Wind energy, 2003, 6(2): 119-128.
[6] BOSSANYI E A.Wind turbine control for load reduction[J]. Wind energy, 2003, 6(3): 229-244.
[7] NIELSEN F G, HANSON T D, SKAARE B.Integrated dynamic analysis of floating offshore wind turbines[C]// Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg, Germany, 2006.
[8] LARSEN T J, HANSON T D.A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine[J]. Journal of physics: conference series, 2007, 75: 012073.
[9] JONKMAN J.Influence of control on the pitch damping of a floating wind turbine[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 2008.
[10] NAMIK H, STOL K.Disturbance accommodating control of floating offshore wind turbines[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, USA, 2009.
[11] NAMIK H, STOL K.Individual blade pitch control of floating offshore wind turbines[J]. Wind energy, 2010, 13(1): 74-85.
[12] ZHANG Y Q, CHEN Z, CHENG M.Proportional resonant individual pitch control for mitigation of wind turbines loads[J]. IET renewable power generation, 2013, 7(3): 191-200.
[13] HAN B, ZHOU L W, YANG F, et al.Individual pitch controller based on fuzzy logic control for wind turbine load mitigation[J]. IET renewable power generation, 2016, 10(5): 687-693.
[14] 鲁效平, 李伟, 林勇刚. 漂浮式海上风力发电机组独立变桨距控制技术研究[J]. 太阳能学报, 2012, 33(4): 600-608.
LU X P, LI W, LIN Y G.Research on the individual pitch control of floating offshore wind turbines[J]. Acta energiae solaris sinica, 2012, 33(4): 600-608.
[15] 周腊吾, 杨彬佑, 韩兵, 等. 漂浮式风机气-水动力耦合下的独立变桨控制方法[J]. 电工技术学报, 2019, 34(17): 3607-3614.
ZHOU L W, YANG B Y, HAN B, et al.The individual blade pitch control for the floating offshore wind turbines bearing the air-hydrodynamic coupling loads[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3607-3614.
[16] 王博, 李春, 岳敏楠, 等. 海上浮式风力机叶片减载及平台运动控制研究[J]. 热能动力工程, 2020, 35(9): 120-126.
WANG B, LI C, YUE M N, et al.Platform motion control and blades load reduction for floating offshore wind turbines[J]. Journal of engineering for thermal energy and power, 2020, 35(9): 120-126.
[17] BOTTRELL G W.Passive cyclic pitch control for horizontal axis wind turbines[C]//Proceedings of Wind Turbine Dynamics. Cleveland, USA, 1981.
[18] LARSEN T J, MADSEN H A, THOMSEN K, et al.Reduction of teeter angle excursions for a two-bladed downwind rotor using cyclic pitch control[C]//2007 European Wind Energy Conference and Exhibition. Milan, Italy, 2007.
[19] BOTTASSO C L, CROCE A, RIBOLDI C D, et al.Cyclic pitch control for the reduction of ultimate loads on wind turbines[J]. Journal of physics: conference series, 2014, 524: 012063.
[20] LI Q A, KAMADA Y, MAEDA T, et al.Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism[J]. Energy, 2016, 99: 20-31.
[21] SANG L Q, LI Q A, CAI C, et al.Wind tunnel and numerical study of a floating offshore wind turbine based on the cyclic pitch control[J]. Renewable energy, 2021, 172: 453-464.
[22] 张琦, 彭志科, 寇雨丰, 等. 海洋工程试验的浮式风力发电机模型设计[J]. 实验室研究与探索, 2019, 38(6): 9-12, 17.
ZHANG Q, PENG Z K, KOU Y F, et al.Model design of floating offshore wind turbine and application in ocean engineering tests[J]. Research and exploration in laboratory, 2019, 38(6): 9-12, 17.
[23] 陈忱, 郑凯, 王福花. 船体梁采样频率和滤波频率确定方法[J]. 舰船科学技术, 2022, 44(2): 39-42.
CHEN C, ZHENG K, WANG F H.Parameters of hull girder stress filtering parameters and sampling frequency[J]. Ship science and technology, 2022, 44(2): 39-42.
[24] 张立, 丁勤卫, 李春, 等. 风载荷对不同海上浮式风力机平台运动特性影响对比研究[J]. 太阳能学报, 2021, 42(9): 302-311.
ZHANG L, DING Q W, LI C, et al.Comparative study on effects of wind load on motion characteristics of different offshore floating wind turbine platforms[J]. Acta energiae solaris sinica, 2021, 42(9): 302-311.
[25] NAMIK H, STOL K, JONKMAN J.State-space control of tower motion for deepwater floating offshore wind turbines[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics. Reno, Nevada, USA, 2008.
[26] WEN B R, LI Z W, JIANG Z H, et al.Blade loading performance of a floating wind turbine in wave basin model tests[J]. Ocean engineering, 2020, 199: 107061.

基金

国家自然科学基金青年科学基金(12102251); 海南省科技计划三亚崖州湾科技城联合项目(120LH050); 海南省科技计划三亚崖州湾科技城联合项目(2021CXLH0023); 汕尾市省级科技专项资金(“大专项+任务清单”)项目(201118165852043)

PDF(2677 KB)

Accesses

Citation

Detail

段落导航
相关文章

/