大型液氢储罐内罐材料研究与应用进展

扬帆, 张超, 张博超, 计宁宁, 丁予晨

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 557-563.

PDF(1140 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1140 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 557-563. DOI: 10.19912/j.0254-0096.tynxb.2022-0930

大型液氢储罐内罐材料研究与应用进展

  • 扬帆, 张超, 张博超, 计宁宁, 丁予晨
作者信息 +

RESEARCH AND APPLICATION PROGRESS OF INNER TANK MATERIALS FOR LARGE LIQUID HYDROGEN STORAGE TANKS

  • Yang Fan, Zhang Chao, Zhang Bochao, Ji Ningning, Ding Yuchen
Author information +
文章历史 +

摘要

国外液氢应用技术起步较早,液氢储罐的设计制造能力已达到最大3800 m3储罐应用案例,相关技术主要由美、日、俄等国所掌握;中国液氢应用技术起步较晚,液氢储罐设计制造能力上限为300 m3储罐,与国际先进水平相比还有较大差距。由于液氢储罐内罐材料的设计、制造属于其最关键核心技术之一,因此,该文综述了液氢储罐内罐材料的研究进展及发展现状,并对生产标准、中国制造能力等进行分析,对下一步液氢储罐材料的技术开发和试制提出建议。

Abstract

The application technology of liquid hydrogen in foreign countries started relatively early, and the design and manufacturing capacity of liquid hydrogen storage tanks has reached the maximum 3800 m3 storage tank application case. The relevant technologies are mainly mastered by the United States, Japan, Russia and other countries. The application technology of liquid hydrogen in China started relatively late, and the upper limit of the design and manufacturing capacity of hydrogen storage tanks is 300 m3, which is still far behind the international advanced level. Since the design and manufacture of the inner tank material of liquid hydrogen storage tank is one of its most critical core technologies, this paper summarizes the research progress and development status of the inner tank material of liquid hydrogen storage tank, and conducts research on production standards and domestic manufacturing capacity, etc. Based on the analysis, the suggestions for the technical development and trial production of liquid hydrogen storage tank materials in the next step are proposed.

关键词

氢能 / 储罐 / 不锈钢 / 材料特性 / 储氢 / 液氢

Key words

hydrogen energy / tank / stainless steel / materials properties / hydrogen storage / liquid hydrogen

引用本文

导出引用
扬帆, 张超, 张博超, 计宁宁, 丁予晨. 大型液氢储罐内罐材料研究与应用进展[J]. 太阳能学报. 2023, 44(10): 557-563 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0930
Yang Fan, Zhang Chao, Zhang Bochao, Ji Ningning, Ding Yuchen. RESEARCH AND APPLICATION PROGRESS OF INNER TANK MATERIALS FOR LARGE LIQUID HYDROGEN STORAGE TANKS[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 557-563 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0930
中图分类号: TK91   

参考文献

[1] 李天宇, 田娇, 高菁菁, 等. 氢能源利用现状及发展展望[J]. 专用汽车, 2021(12): 105-107.
LI T Y, TIAN J, GAO J J, et al.Current situation and development prospect of hydrogen energy utilization[J]. Special purpose vehicle, 2021(12): 105-107.
[2] 刘玮, 万燕鸣, 熊亚林, 等. “双碳”目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642.
LIU W, WAN Y M, XIONG Y L, et al.Outlook of low carbon and clean hydrogen in China under the goal of “carbon peak and neutrality”[J]. Energy storage science and technology, 2022, 11(2): 635-642.
[3] 殷卓成, 杨高, 刘怀, 等. 氢能储运关键技术研究现状及前景分析[J]. 现代化工, 2021, 41(11): 53-57.
YIN Z C, YANG G, LIU H, et al.Research status and prospect analysis of key technologies for hydrogen energy storage and transportation[J]. Modern chemical industry, 2021, 41(11): 53-57.
[4] 苗安康, 袁越, 吴涵, 等. “双碳”目标下绿色氢能技术发展现状与趋势研究[J]. 分布式能源, 2021, 6(4): 15-24.
MIAO A K, YUAN Y, WU H, et al.Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(4): 15-24.
[5] 李建林, 梁忠豪, 梁丹曦, 等. “双碳”目标下绿氢制备及应用技术发展现状综述[J]. 分布式能源, 2021, 6(4): 25-33.
LI J L, LIANG Z H, LIANG D X, et al.Overview of development status of green hydrogen production and application technology under targets of carbon peak and carbon neutrality[J]. Distributed energy, 2021, 6(4): 25-33.
[6] 殷伊琳. 我国氢能产业发展现状及展望[J]. 化学工业与工程, 2021, 38(4): 78-83.
YIN Y L.Present situation and prospect of hydrogen energy industry[J]. Chemical industry and engineering, 2021, 38(4): 78-83.
[7] 周锦, 席静, 王静, 等. 氢能的研究综述[J]. 山东化工, 2019, 48(3): 49, 52.
ZHOU J, XI J, WANG J, et al. Research status on hydrogen energy[J]. Shandong chemical industry, 2019, 48(3): 49, 52.
[8] 宋泽林. 氢能源利用现状及发展方向[J]. 石化技术, 2021, 28(5): 69-70, 32.
SONG Z L.Utilization status and development direction of hydrogen energy[J]. Petrochemical industry technology, 2021, 28(5): 69-70, 32.
[9] 沈丹丹, 高顶云, 潘相敏. 氢能源利用安全性综述[J]. 上海节能, 2020(11): 1236-1246.
SHEN D D, GAO D Y, PAN X M.Literature review on safety of hydrogen energy utilization[J]. Shanghai energy conservation, 2020(11): 1236-1246.
[10] 孙延寿, 李旭航, 王云飞, 等. 氢气储运技术发展综述[J]. 山东化工, 2021, 50(19): 96-98.
SUN Y S, LI X H, WANG Y F, et al.Summary of hydrogen storage and transporation technology development[J]. Shandong chemical industry, 2021, 50(19): 96-98.
[11] 高金良, 袁泽明, 尚宏伟, 等. 氢储存技术及其储能应用研究进展[J]. 金属功能材料, 2016, 23(1): 1-11.
GAO J L, YUAN Z M, SHANG H W, et al.Research progress on storage technology and stored energy application of hydrogen[J]. Metallic functional materials, 2016, 23(1): 1-11.
[12] 邱方程, 郭新良, 郑欣, 等. 液态有机储氢材料的常见体系及进展[J]. 广东化工, 2021, 48(12): 101-102, 120.
QIU F C, GUO X L, ZHENG X, et al.Common system and progress of liquid organic hydrogen storage materials[J]. Guangdong chemical industry, 2021, 48(12): 101-102, 120.
[13] 刘霞. 新工艺将液氨直接转为氢气: 耗能仅为目前水解法制氢的三分之一[N]. 科技日报, 2021-08-16(004).
LIU X. New process converts liquid ammonia directly into hydrogen[N]. Science and technology daily, 2021-08-16(004).
[14] 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814.
CHEN X L, LIU X M, WANG J, et al.Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical industry and engineering progress, 2021, 40(9): 4806-4814.
[15] 凌文, 李全生, 张凯. 我国氢能产业发展战略研究[J]. 中国工程科学, 2022, 24(3): 80-88.
LING W, LI Q S, ZHANG K.Research on the development strategy of China’s hydrogen energy industry[J]. Strategic study of CAE, 2022, 24(3): 80-88.
[16] 颜祥洲. 关于氢气储存技术方法的研究[J]. 能源与节能, 2022(5): 59-61.
YAN X Z.Hydrogen storage technologies and methods[J]. Energy and energy conservation, 2022(5): 59-61.
[17] 张东华, 丁乙, 纪新颖. LNG低温储罐用9%Ni钢材性质探讨[J]. 新材料产业, 2012(12): 37-40.
ZHANG D H, DING Y, JI X Y.Discussion on properties of 9%Ni steel for LNG cryogenic storage tank[J]. Advanced materials industry, 2012(12): 37-40.
[18] 李晓明, 王冰, 张泽, 等. 奥氏体不锈钢低温性能及选用[J]. 石油化工设备, 2013, 42(S1): 61-63.
LI X M, WANG B, ZHANG Z, et al.Low temperature properties of austenitic stainless steel and selection[J], Petro-chemical equipment, 2013, 42(S1): 61-63.
[19] 丁镠, 唐涛, 王耀萱, 等. 氢储运技术研究进展与发展趋势[J]. 天然气化工(C1化学与化工), 2022, 47(2): 35-40.
DING L, TANG T, WANG Y X, et al.Research progress and development trend of hydrogen storage and transportation technology[J]. Natural gas chemical industry, 2022, 47(2): 35-40.
[20] 徐常安. LH2(液氢)运输船关键技术研究[J]. 科学技术创新,2022(14):153-156.
XU C A.Research on key technology of LH2(liquid hydrogen) carrier[J]. Scientific and technological innovation, 2022(14): 153-156.
[21] 盛雪莲. 氢能源的储存发展研究及液态储氢的容器技术[J]. 科技经济市场, 2010(7): 21-22.
SHENG X L.Research on storage development of hydrogen energy and container technology of liquid hydrogen storage[J]. Science & technology ecnony market, 2010(7): 21-22.
[22] 许炜, 陶占良, 陈军. 储氢研究进展[J]. 化学进展, 2006, 18(S1): 200-210.
XU W, TAO Z L, CHEN J.Progress of research on hydrogen storage[J]. Progress in chemistry, 2006, 18(S1):200-210.
[23] 刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势[J]. 油气储运, 2022, 41(5): 498-514.
LIU C W, PEI Y B, HAN H, et al.Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies[J]. Oil & gas storage and transportation, 2022, 41(5): 498-514.
[24] 罗承先. 世界氢能储运研究开发动态[J]. 中外能源, 2017, 22(11): 41-49.
LUO C X.Research and development of hydrogen storage and transportation worldwide[J]. Sino-global energy, 2017, 22(11): 41-49.
[25] 陈贇. 氢能发展:从战略到运营[J]. 中国石油企业, 2022(S1): 10-15.
CHEN Y.Development of hydrogen energy development: from strategy to operation[J]. China petroleum enterprise, 2022(S1): 10-15.
[26] 蒲亮, 余海帅, 代明昊, 等. 氢的高压与液化储运研究及应用进展[J]. 科学通报, 2022, 67(19): 2172-2191.
PU L, YU H S, DAI M H, et al.Research progress and application of high-pressure hydrogen and liquid hydrogen in storage and transportation[J]. Chinese science bulletin, 2022, 67(19): 2172-2191.
[27] EDESKUTY F J, WILLIAMSON K D J R, 王志良. 液化气体的贮存和运输[J]. 深冷技术, 1978(4): 69-76.
EDESKUTY F J, WILLIAMSON K D Jr, WANG Z L. Storage and transportation of liquefied gas[J]. Cryogenic technology, 1978(4): 69-76.
[28] 柯甜甜. 大型LNG储罐保冷结构及其性能研究[D]. 广州: 华南理工大学, 2017.
KE T T.Research on the cold insulation structure and performance of the largescale LNG tank[D]. Guangzhou: South China University of Technology, 2017.
[29] 叶青, 张应武. 低温储罐保冷隔热材料的真空充填技术[J]. 压力容器, 2005, 22(7): 53-54.
YE Q, ZHANG Y W.Vacuum filler technique for heat insulation material of low temperature storage tank[J]. Pressure vessel technology, 2005, 22(7): 53-54.
[30] 朱云. 液化石油气卧式储罐的规则设计[J]. 中国石油和化工标准与质量, 2013, 34(6): 265.
ZHU Y.Rule design of liquefied petroleum gas horizontal storage tank[J]. China petroleum and chemical standard and quality, 2013, 34(6): 265.
[31] 吴志燕, 翁玉祥, 罗晓钟. 低温液体球罐和低温液体子母罐的对比分析[J]. 辽宁化工, 2018, 47(4): 306-308.
WU Z Y, WENG Y X, LUO X Z.Contrastive analysis on cryogenic liquid sphere tank and cryogenic liquid cluster tank[J]. Liaoning chemical industry, 2018, 47(4): 306-308.
[32] 郭怀东, 邵百岁, 陈忠胜. 大型低温液体贮存站贮罐设计选型论证(续)[J]. 深冷技术, 2008(3): 32-38.
GUO H D, SHAO B S, CHEN Z S.Discussion on model selection in the designing of storage tanks for large scale cryogenic liquid storage station(continuation)[J]. Cryogenic technology, 2008(3): 32-38.
[33] 阚红元. 大型立式圆筒形低温储罐简介[J]. 石油化工设备技术, 2007, 28(5): 24-27, 30.
KAN H Y.Brief introduction of large vertical cylindrical cryogenic storage tank[J]. Petrochemical equipment technology, 2007, 28(5): 24-27, 30.
[34] 郝伟. 固定式真空绝热压力容器的定期检验[J].低温与特气, 2021, 39(2): 48-51.
HAO W.Periodic inspection of stationary vacuum insulated pressure vessel[J]. Low temperature and specialty gases, 2021, 39(2): 48-51.
[35] 游旭东, 刘超峰, 李保亮. 影响低温液体贮槽绝热性能的因素及改善[J]. 化学工程与装备, 2014(9): 158-160.
YOU X D, LIU C F, LI B L.Factors affecting the thermal insulation performance of cryogenic liquid storage tank and its improvement[J]. Chemical engineering & equipment, 2014(9): 158-160.
[36] 薛小龙, 施锋萍, 周伟明. 高真空多层绝热用材料标准现状及其对策[J]. 质量与标准化, 2012(11): 39-41.
XUE X L, SHI F P, ZHOU W M.The status quo of high vacuum multilayer insulation material standards and their countermeasures[J]. Quality and standardization, 2012(11): 39-41.
[37] 陈宇, 张小玉, 张荣沛. 中国氢能产业链现状及前景展望[J]. 新型工业化, 2021, 11(4): 176-180, 182.
CHEN Y, ZHANG X Y, ZHANG R P.Present situation and prospect of hydrogen energy industry chain in China[J]. The journal of new industrialization, 2021, 11(4): 176-180, 182.
[38] 湛利华, 关成龙, 黄诚, 等. 航天低温复合材料贮箱国内外研究现状分析[J]. 航空制造技术, 2019, 62(16): 79-87.
ZHAN L H, GUAN C L, HUANG C, et al.Analysis of research status of composite cryotank for space[J]. Aeronautical manufacturing technology, 2019, 62(16): 79-87.
[39] HOUSTON E L.Liquid and solid storage of hydrogen[C]//5th world Hydrogen Energy Conference. Toronto, Ontario, Canada, 1984: 1171-1186.
[40] TAYLOR J B, ALDERSON J E A, KALYANAM K M, et al. Technical and economic assessment of methods for the storage of large quantities of hydrogen[J]. International journal of hydrogen energy, 1986, 11(1): 5-22.
[41] 谢秀娟. 国内液氢技术装备与产业应用[J]. 科学新闻, 2022, 24(2): 20-22.
XIE X J.Domestic liquid hydrogen technology and equipment and industrial application[J]. Science news, 2022, 24(2): 20-22.
[42] 时光志. 液氢运输船技术现状及发展方向[J]. 船海工程, 2022, 51(2): 81-85.
SHI G Z.On technical status and development direction of liquid hydrogen carrier[J]. Ship & ocean engineering, 2022, 51(2): 81-85.
[43] 侯杰耀. 浅析低温条件下304不锈钢基本力学性能[J]. 南方农机, 2020, 51(17): 105-107.
HOU J Y.Analysis on basic mechanical properties of 304 stainless steel at low temperature[J]. China southern agricultural machinery, 2020, 51(17): 105-107.
[44] 王惠颖, 孙拥军, 米辉耀, 等. 浅谈液氢储运压力容器的研制[J]. 机电产品开发与创新, 2021, 34(6): 34-35, 42.
WANG H Y, SUN Y J, MI H Y, et al.Development of pressure vessel for liquid hydrogen storage and transportation[J]. Development & innovation of machinery & electrical products, 2021, 34(6): 34-35, 42.
[45] 王宏伟. 金属材料低温性能的研究[D]. 沈阳: 沈阳航空航天大学, 2015.
WANG H W.The study of metal materials on low temperature properties[D]. Shenyang: Shenyang University of Aeronautics and Astronautics, 2015.
[46] 杜宇, 蔡学章, 杨冠军. CT20钛合金20K下的应变行为与组织关系分析[J]. 钛工业进展, 2005, 22(6): 14-17.
DU Y, CAI X Z, YANG G J.Analysis of the relationship between strain behavior and microstructure of CT20 titanium alloy at 20 K[J]. Titanium industry progress, 2005, 22(6): 14-17.
[47] 朱炳麟, 周彬. 铝合金材料低温力学性能试验研究[J]. 信息记录材料, 2022, 23(3): 35-37.
ZHU B L, ZHOU B.Experimental study on low temperature mechanical properties of aluminum alloys material[J]. Information recording materials, 2022, 23(3): 35-37.
[48] 黄泽. 压力容器用奥氏体不锈钢深冷拉伸试验研究[D]. 杭州: 浙江大学, 2013.
HUANG Z.Study on the tension behavior of austenitic stainless steel under crrogenic environment[D]. Hangzhou: Zhejiang University, 2013.
[49] 孔韦海. 压力容器用应变强化奥氏体不锈钢组织转变及低温力学性能研究[D]. 合肥: 合肥工业大学, 2021.
KONG W H.Research for structural transformation and low temperature mechanical properties of strain-reinforced austenitic stainless steel for pressure ressels[D]. Hefei: Hefei University of Technology, 2021.
[50] 范承亮. 显微组织和间隙元素对近α钛合金低温塑韧性的影响[D]. 西安: 西安建筑科技大学, 2004.
FAN C L.On the effect of microstructure and interstitial content on plasticity and toughness of near α titanium alloy at cryogenic temperature[D]. Xi’an: Xi’an University of Architecture and Technology, 2004.
[51] GB/T 40045—2021, 氢能汽车用燃料液氢[S]. 2021.
GB/T 40045—2021, Liquid hydrogen for hydrogen vehicle fuels[S]. 2021.
[52] GB/T 40060—2021, 液氢贮存和运输技术要求[S]. 2021.
GB/T 40060—2021, Technical requirements for storage and transportation of liquid hydrogen[S]. 2021.
[53] GB/T 40061—2021, 液氢生产系统技术规范[S]. 2021.
GB/T 40061—2021, Technical specifications for liquid hydrogen production systems[S]. 2021.
[54] GB/T 150—2011, 压力容器[S]. 2011.
GB/T 150—2011, Pressure vessel[S]. 2011.
[55] T/CATSI 05006—2021, 固定式真空绝热液氢压力容器专项技术要求》[S]. 2021.
T/CATSI 05006—2021, Special technical requirements for static vacuum-insulation liquid hydrogen pressure vessels[S]. 2021.
[56] 秋长鋆. 高强度钢在常温高压氢气中的氢脆[J]. 中国锅炉压力容器安全, 1999, 15(6): 15-19, 47.
QIU C Y.The hydrogen britteless in the nomal temperature and high pressure hydrogen of the high strength steel[J]. China boiler and pressure vessel safety, 1999, 15(6): 15-19, 47.
[57] 杨黎青, 陈建伟, 王丹妮. 金属的氢脆腐蚀现象及其评价方法[C]//陕西省机械工程学会2014年论文汇编. 2022: 46-48.
YANG L Q, CHEN J W, WANG D N.Hydrogen embrittlement corrosion phenomenon of metals and its evaluation method[C]//2014 Paper Compilation of Shaanxi Mechanical Engineering Society, 2022:46-48.
[58] 周池楼, 何默涵, 郭晋, 等. 高压氢环境奥氏体不锈钢焊件氢脆研究进展[J]. 化工进展, 2022, 41(2): 519-536.
ZHOU C L, HE M H, GUO J, et al.Review on hydrogen embrittlement of austenitic stainless steel weldments in high pressure hydrogen atmosphere[J]. Chemical industry and engineering progress, 2022, 41(2): 519-536.
[59] 袁浩, 李占雷, 王林森. 铁素体对奥氏体不锈钢氢脆敏感性机理的研究[J]. 锅炉技术, 2022, 53(1): 48-51, 57.
YUAN H, LI Z L, WANG L S.Research on mechanism of effect of ferrite on susceptibility to hydrogen embrittlement of austenitic stainless steels[J]. Boiler technology, 2022, 53(1): 48-51, 57.
[60] 陈波. 奥氏体不锈钢氢致脆断的探讨[J]. 冶金与材料, 2020, 40(3): 165, 167.
CHEN B. Discussion on hydrogen-induced brittle fracture of austenitic stainless steel[J]. Metallurgy and materials, 2020, 40(3): 165, 167.
[61] 李小龙. 抗氢脆表面设计的第一性原理计算[D].北京: 北京科技大学, 2019.
LI X L.First-principles calculations of surface design for hydrogen-resistant embrittlement resistauce[D]. Beijing: University of Science and Technology Beijing, 2019.
[62] 潘晓霞, 谭云, 丰杰, 等. 抗氢钢表面防氢渗透涂层[C]//中国工程物理研究院科技年报(1998). 1998: 155.
PAN X X, TAN Y, FENG J, et al.Hydrogen-resistant steel surface anti-hydrogen penetration coating[C]//Annual Report of Science and Technology of China Academy of Engineering Physics(1998). 1998: 155.
[63] 郑阳. 激光喷丸强化316L不锈钢抗氢脆性能研究[D]. 镇江: 江苏大学, 2016.
ZHENG Y.Study on hydrogen embrittlement resistance of laser peening strengthened 316L stainless steel[D]. Zhenjiang: Jiangsu University, 2016.
[64] NB/T 47013.3, 承压设备无损检测B/T 47013.3, 承压设备无损检测[S]. 2015.
NB/T 47013.3, Non-destructive testing of pressure equipmentB/T 47013.3, Non-destructive testing of pressure equipment[S]. 2015.

基金

中国海洋石油集团有限公司科技项目(QDKY-2020-YFZX-10)

PDF(1140 KB)

Accesses

Citation

Detail

段落导航
相关文章

/