井下同轴换热系统最佳流量设计方法

肖东, 蔡纯, 杨瑞涛, 杨凯杰, 高若禹

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 473-480.

PDF(2372 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2372 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 473-480. DOI: 10.19912/j.0254-0096.tynxb.2022-0937

井下同轴换热系统最佳流量设计方法

  • 肖东1, 蔡纯1, 杨瑞涛2, 杨凯杰3, 高若禹1
作者信息 +

OPTIMAL FLOW RATE DESIGN METHOD OF DOWNHOLE COAXIAL HEAT EXCHANGER SYSTEM

  • Xiao Dong1, Cai Chun1, Yang Ruitao2, Yang Kaijie3, Gao Ruoyu1
Author information +
文章历史 +

摘要

利用井下同轴换热系统(DCHES)取热是一种开发岩层地热能的有效手段,但目前缺乏针对其流量优化的设计方法。依据流动与传热基本原理,建立DCHES取热数学模型,并通过现场测试数据进行验证。耦合取热功率的可用性,形成DCHES最佳流量的设计方法,并以西安地区为例开展现场应用。结果表明:取热功率的可用性随流量的增大先增加后减小;取热功率可用性最大时所对应的流量即为DCHES的最佳流量。在DCHES的实际运行中,可利用本方法不断调整运行流量以获得最大火用功率。

Abstract

The utilization of downhole coaxial heat exchanger system (DCHES) is an effective means to develop geothermal energy in rock formation. However, there is currently a lack of design methods to optimize its operating flow rate. Based on the basic principles of flow and heat transfer, a mathematical model of DCHES is established and verified by the field test data. By coupling the availability of heat extraction power, an optimal flow rate design method of DCHES was established. The field application was carried out in Xi'an area as an example. The results show that the availability of the heat extraction power first increases and then decreases with the increase of the flow rate; the flow rate corresponding to the maximum extraction heat power is the optimal flow rate of DCHES. In the operation of DCHES, this method can be used to continuously adjust the operating flow to obtain the maximum exergy power.

关键词

地热能 / 换热器 / 火用 / 最佳流量 / 井筒传热模型

Key words

geothermal energy / heat exchangers / exergy / optimum flow rate / wellbore heat transfer model

引用本文

导出引用
肖东, 蔡纯, 杨瑞涛, 杨凯杰, 高若禹. 井下同轴换热系统最佳流量设计方法[J]. 太阳能学报. 2023, 44(10): 473-480 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0937
Xiao Dong, Cai Chun, Yang Ruitao, Yang Kaijie, Gao Ruoyu. OPTIMAL FLOW RATE DESIGN METHOD OF DOWNHOLE COAXIAL HEAT EXCHANGER SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 473-480 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0937
中图分类号: TK529   

参考文献

[1] OFIPCC W.Climate change 2021:the physical science basis[R]. Geneva: IPCC, 2021.
[2] 王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459.
WANG G L, ZHANG W, LIANG J Y, et al.Evaluation of geothermal resources potential in China[J]. Acta geoscientica sinica, 2017, 38(4): 449-459.
[3] 曹倩, 方朝合,李云, 等. 国内外地热回灌发展现状及启示[J]. 石油钻采工艺, 2021, 43(2): 203-211.
CAO Q, FANG C H, LI Y, et al.Development status of geothermal reinjection at home and abroad and its enlightenment[J]. Oil drilling & production technology, 2021, 43(2): 203-211.
[4] KAYA E, ZARROUK S J, O’SULLIVAN M J. Reinjection in geothermal fields: a review of worldwide experience[J]. Renewable & Sustainable energy reviews, 2011, 15(1): 47-68.
[5] 郭亮亮, 黄贤龙, 安晓红, 等. 增强型地热系统结合热泵供暖系统研究[J]. 可再生能源, 2019, 37(7): 1100-1106.
GUO L L, HUANG X L, AN X H, et al.Heating effect research of heat pump coupled with enhanced geothermal system[J]. Renewable energy resources, 2019, 37(7): 1100-1106.
[6] 廖志杰, 万天丰, 张振国. 增强型地热系统:潜力大、开发难[J]. 地学前缘, 2015, 22(1): 335-344.
LIAO Z J, WAN T F, ZHANG Z G.The enhanced geothermal system (EGS): huge capacity and difficult exploitation[J]. Earth science frontiers, 2015, 22(1): 335-344.
[7] 亢方超, 唐春安. 基于开挖的增强型地热系统概述[J]. 地学前缘, 2020, 27(1):185-193.
KANG F C, TANG C A.Overview of enhanced geothermal system (EGS) based on excavation in China[J]. Earth science frontiers, 2020, 27(1): 185-193.
[8] 宋先知, 张逸群, 李根生, 等. 雄安新区地热井同轴套管闭式循环取热技术研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(9): 971-981.
SONG X Z, ZHANG Y Q, LI G S, et al.Performance study of the downhole coaxial closed-loop heat exchange technology in Xiong’an new area[J]. Journal of Tianjin University(science and technology), 2021, 54(9): 971-981.
[9] BEIER R A, ACUÑA J, MOGENSEN P, et al. Transient heat transfer in a coaxial borehole heat exchanger[J]. Geothermics, 2014, 51: 470-482.
[10] HOLMBERG H, ACUÑA J, NÆSS E, et al. Thermal evaluation of coaxial deep borehole heat exchangers[J]. Renewable energy, 2016, 97: 65-76.
[11] GIZZI M, TADDIA G, LO RUSSO S.Reuse of decommissioned hydrocarbon wells in italian oilfields by means of a closed-loop geothermal system[J]. Applied sciences, 2021, 11(5): 2411.
[12] 邓杰文, 魏庆芃, 张辉, 等. 中深层地热源热泵供暖系统能耗和能效实测分析[J]. 暖通空调, 2017, 47(8): 150-154.
DENG J W, WEI Q P, ZHANG H, et al.On-site measurement and analysis on energy consumption and energy efficiency ratio of medium-depth geothermal heat pump systems for space heating[J]. Heating ventilating & air conditioning, 2017, 47(8): 150-154.
[13] SONG X Z, ZHENG R, LI G S, et al.Heat extraction performance of a downhole coaxial heat exchanger geothermal system by considering fluid flow in the reservoir[J]. Geothermics, 2018, 76: 190-200.
[14] ZHANG Y Q, YU C, LI G S, et al.Performance analysis of a downhole coaxial heat exchanger geothermal system with various working fluids[J]. Applied thermal engineering, 2019, 163: 114317.
[15] 赵春虎, 尚宏波, 靳德武, 等. 深层垂直井同轴换热能力数值模拟分析[J]. 煤田地质与勘探, 2020, 48(5): 174-181.
ZHAO C H, SHANG H B, JIN D W, et al.Numerical simulation of coaxial heat transfer capacity of deep vertical wells[J]. Coal geology & exploration, 2020, 48(5): 174-181.
[16] 李奉翠, 韩二帅, 梁磊, 等. 中深层地热井下同轴换热器长期换热性能研究[J].煤田地质与勘探, 2021, 49(2): 194-201.
LI F C, HAN E S, LIANG L, et al.Long-term heat transfer performance of underground coaxial heat exchanger for medium-deep geothermal[J]. Coal geology & exploration, 2021, 49(2): 194-201.
[17] 黄献文, 姚直书, 薛维培, 等. 基于分段法的同轴套管换热器解析模型研究[J]. 太阳能学报, 2022, 43(4): 95-103.
HUANG X W, YAO Z S, XUE W P, et al.Analytical model of coaxial borehole heat exchanger based on segmentation method[J]. Acta energiae solaris sinica, 2022, 43(4): 95-103.
[18] 于超, 张逸群, 宋先知, 等. 井下同轴闭式地热系统循环工质综合评价优选[J]. 石油钻探技术, 2021, 49(5): 101-107.
YU C, ZHANG Y Q, SONG X Z, et al.Comprehensive evaluation and optimization of circulating working fluids in the coaxial borehole heat exchanger closed-loop geothermal system[J]. Petroleum drilling techniques, 2021, 49(5): 101-107.
[19] 杨谋, 孟英峰, 李皋, 等. 钻井液径向温度梯度与轴向导热对井筒温度分布影响[J]. 物理学报, 2013, 62(7): 537-546.
YANG M, MENG Y F, LI G, et al.Effects of the radial temperature gradient and axial conduction of drilling fluid on the wellbore temperature distribution[J]. Acta physica sinica, 2013, 62(7): 537-546.
[20] AMERI M, KIAAHMADI F, KHANAKI M, et al.Energy and exergy analyses of a spark-ignition engine[J]. International journal of exergy, 2010, 7(5): 547-563.

基金

国家自然科学基金(51874252); 中国石油科技创新基金(2020D-5007-0312); 四川省重点研发项目(2023YFS0358); 延长石油科技计划项目(GJM18TLH0005)

PDF(2372 KB)

Accesses

Citation

Detail

段落导航
相关文章

/