计及碳捕集的虚拟电厂-电制氢多主体协调优化

张贵鹏, 程静

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 92-101.

PDF(2073 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2073 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 92-101. DOI: 10.19912/j.0254-0096.tynxb.2022-0942

计及碳捕集的虚拟电厂-电制氢多主体协调优化

  • 张贵鹏, 程静
作者信息 +

MULTI-AGENT COORDINATION AND OPTIMIZATION OF VPPS-P2H BASED ON CARBON CAPTURE

  • Zhang Guipeng, Cheng Jing
Author information +
文章历史 +

摘要

针对考虑碳捕集的虚拟电厂-电制氢多主体能源系统的协调优化问题,建立基于纳什谈判理论的虚拟电厂-电制氢多主体合作运行模型。首先将难以求解的原纳什模型等效为合作运行收益最大化和电能交易支付两个子问题模型;然后采用改进的交替方向乘子法(ADMM)对子问题模型进行优化求解,加快算法收敛速度,保护各谈判主体隐私。算例仿真结果表明:聚合的碳捕集单元促进可再生能源消纳,减少碳排放;通过虚拟电厂-电制氢多主体的合作运行,可较大幅度提高各主体的运行收益以及联合合作的整体收益,验证了所建模型以及改进算法的有效性和优越性。

Abstract

Aiming at the coordination and optimization of VPPS-P2H multi-agent energy system considering carbon capture, a VPPS-P2H multi-agent cooperative operation model is proposed based on Nash negotiation theory. In view of the difficulty of solving the optimization model directly, the original Nash model is broken down into two equivalent subproblems: the maximization of cooperative operation income and the payment of electric energy transaction. In order to protect the privacy of each negotiation subject and accelerate the convergence speed of the algorithm, the improved alternating direction method of multipliers (alternating direction method of multipliers,ADMM) is used to optimize the subproblems. The simulation results show that through the cooperative operation of VPPS-P2H multi-agent, the operation income of each agent and the overall income of joint cooperation can be greatly improved, which verifies the effectiveness and superiority of the proposed cooperative operation model and the improved algorithm.

关键词

虚拟电厂 / 电制氢 / 碳捕集 / 纳什谈判 / 改进交替方向乘子法 / 多主体协调优化

Key words

virtual power plant / power-to-hydrogen / carbon capture / Nash negotiation / improved alternating direction method of multipliers / multi-agent coordination optimization

引用本文

导出引用
张贵鹏, 程静. 计及碳捕集的虚拟电厂-电制氢多主体协调优化[J]. 太阳能学报. 2023, 44(8): 92-101 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0942
Zhang Guipeng, Cheng Jing. MULTI-AGENT COORDINATION AND OPTIMIZATION OF VPPS-P2H BASED ON CARBON CAPTURE[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 92-101 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0942
中图分类号: TM734   

参考文献

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.
[2] 田原宇, 乔英云, 张永宁. 碳中和约束下绿色减排体系的构建[J]. 化工进展, 2022, 41(2): 1078-1084.
TIAN Y Y, QIAO Y Y, ZHANG Y N.Construction of green emission reduction system under the constraint of carbon neutrality[J]. Chemical industry and engineering progress, 2022, 41(2): 1078-1084.
[3] 陈海鹏, 陈晋冬, 张忠, 等. 计及灵活运行碳捕集电厂捕获能耗的电力系统低碳经济调度[J]. 电力自动化设备, 2021, 41(9): 133-139.
CHEN H P, CHEN J D, ZHANG Z, et al.Low-carbon economic dispatching of power system considering capture energy consumption of carbon capture power plants with flexible operation mode[J]. Electric power automation equipment, 2021, 41(9): 133-139.
[4] 赵冬梅, 王浩翔, 陶然. 计及风电-负荷不确定性的风-火-核-碳捕集多源协调优化调度[J]. 电工技术学报, 2022, 37(3): 707-718.
ZHAO D M, WANG H X, TAO R.A multi-source coordinated optimal scheduling model considering wind-load uncertainty[J]. Transactions of China Electrotechinal Society, 2022, 37(3): 707-718.
[5] 李铁, 李正文, 杨俊友, 等. 计及调峰主动性的风光水火储多能系统互补协调优化调度[J]. 电网技术,2020,44(10): 3622-3630.
LI T, LI Z W, YANG J Y, et al.Coordination and optimal scheduling of multi-energy complementary system considering peak regulation initiative[J]. Power system technology, 2020, 44(10): 3622-3630.
[6] 袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报, 2022, 42(12): 4440-4449.
YUAN G L, LIU H Q, YU J F, et al.Combined heat and power optimal dispatching in virtual power plant with carbon capture cogeneration unit[J]. Proceedings of the CSEE, 2022, 42(12): 4440-4449.
[7] 蔡钦钦, 肖宇, 朱永强. 计及电转氢和燃料电池的电热微网日前经济协调调度模型[J]. 电力自动化设备, 2021, 41(10): 107-112, 161.
CAI Q Q, XIAO Y, ZHU Y Q.Day-ahead economic coordination dispatch model of electricity-heat microgrid considering P2H and fuel cells[J]. Electric power automation equipment, 2021, 41(10): 107-112, 161.
[8] 马明, 刘涌. 计及住宅混合能源需求响应的含风电系统随机优化调度[J]. 太阳能学报, 2022, 43(1): 11-20.
MA M, LIU Y.Stochastic optimal dispatch of power system with wind power considering demand response of residential ahybrid energy system[J]. Acta energiae solaris sinica, 2022, 43(1): 11-20.
[9] 张高航, 李凤婷. 计及源荷储综合灵活性的电力系统日前优化调度[J]. 电力自动化设备, 2020,40(12): 159-167.
ZHANG G H, LI F T.Day-ahead optimal scheduling of power system considering comprehensive flexibility of source-load-storage[J]. Electric power automation equipment, 2020, 40(12): 159-167.
[10] 臧海祥, 马铭欣, 周亦洲, 等. 电力市场环境下风电-光热-生物质混合电站鲁棒优化调度模型[J]. 电力系统保护与控制, 2022, 50(5): 1-11.
ZANG H X, MA M X,ZHOU Y Z, et al.Robust optimal scheduling model for a ‘wind power-concentrating solar power-biomass’ hybrid power plant in the electricity market[J]. Power system protection and control, 2022, 50(5): 1-11.
[11] 张亚超, 郑峰, 乐健, 等. 考虑风电高阶不确定性的电气综合系统分布鲁棒协同优化调度[J]. 中国电机工程学报, 2020, 40(24): 8012-8026, 8238.
ZHANG Y C, ZHENG F, LE J, et al.A distributionally robust coordinated optimization scheduling of integrated electricity and natural gas systems considering higher-order uncertainty of wind power[J]. Proceedings of the CSEE, 2020, 40(24): 8012-8026, 8238.
[12] 邱革非, 何超, 骆钊, 等. 考虑源、荷不确定性的工业园区电-气互联综合能源系统模糊优化调度[J]. 电力自动化设备, 2022, 42(5): 8-14.
QIU G F, HE C, LUO Z, et al.Fuzzy optimal scheduling of integrated electricity and natural gas system in industrial park considering source-load uncertainty[J]. Electric power automation equipment, 2022, 42(5): 8-14.
[13] 李国庆, 翟晓娟, 李扬, 等. 基于改进蚁群算法的微电网多目标模糊优化运行[J]. 太阳能学报, 2018, 39(8): 2310-2317.
LI G Q, ZHAI X J, LI Y, et al.Multi-objective fuzzy optimization operation of micro-grid based on improved ant colony algorithm[J]. Acta energiae solaris sinica, 2018, 39(8): 2310-2317.
[14] 宋大为, 尹硕, 何洋, 等. 基于虚拟电厂的多元小微主体参与现货市场的竞价策略[J]. 南方电网技术, 2021,15(9): 75-84.
SONG D W, YIN S,HE Y, et al.Bidding strategy of multiple small and micro entities participating in the spot market based on virtual power plant[J]. Southern power system technology, 2021, 15(9): 75-84.
[15] 陈吕鹏, 潘振宁, 余涛, 等. 基于动态非合作博弈的大规模电动汽车实时优化调度[J]. 电力系统自动化, 2019, 43(24): 32-40, 66.
CHEN L P, PAN Z N, YU T, et al.Real-time optimal dispatch for large-scale electric vehicles based on dynamic non-cooperative game theory[J]. Automation of electric power system, 2019, 43(24): 32-40, 66.
[16] 孙惠娟, 刘昀, 彭春华, 等. 计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J]. 电网技术, 2021, 45(9): 3534-3545.
SUN H J, LIU Y, PENG C H, et al.Optimization scheduling of virtual power plant with carbon capture and waste incineration considering power-to-gas coordination[J]. Power system technology, 2021, 45(9): 3534-3545.
[17] 陈锦鹏, 胡志坚, 陈颖光, 等. 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J]. 电力自动化设备, 2021, 41(9): 48-55.
CHEN J P, HU Z J, CHEN Y G, et al.Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J]. Electric power automation equipment, 2021,41(9):48-55.
[18] WU X, QI S X, WANG Z, et al.Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach[J]. Applied energy,2019, 253: 113568.
[19] WANG Z X, HU J J, LIU B Z.Stochastic optimal dispatching strategy of electricity-hydrogen-gas-heat integrated energy system based on improved spectral clustering method[J]. International journal of electrical power & energy systems, 2021, 126: 106495.
[20] NASH J.The bargaining problem[J]. Econometrica,1950, 18(2): 155-162.
[21] BOYD S, PARIKH N, CHU E, et al.Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and trends in machine learning, 2011, 3(1): 1-122.
[22] 解蛟龙. 风/光/负荷典型场景缩减方法及在电网规划中的应用[D]. 合肥: 合肥工业大学, 2017.
XIE J L.A typical reduced-scenario analysis method for wind, photoelectric, load scene and its application in power system planning[D]. Hefei: Hefei University of Technology, 2017.

基金

新疆维吾尔自治区重点实验室开放课题(2020D04048); 新疆维吾尔自治区重大科技专项(2022A01001-4); 国家重点研发计划(2021YFB1506902); 新疆维吾尔自治区重点研发项目(2022B01003)

PDF(2073 KB)

Accesses

Citation

Detail

段落导航
相关文章

/