基于气热除冰的大型风电机组叶片内腔流动阻力优化研究

马鹏楠, 魏家星, 端和平, 王杲展, 姜婷婷, 罗勇水

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 420-426.

PDF(2050 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2050 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 420-426. DOI: 10.19912/j.0254-0096.tynxb.2022-0946

基于气热除冰的大型风电机组叶片内腔流动阻力优化研究

  • 马鹏楠, 魏家星1,2, 端和平1,2, 王杲展1,2, 姜婷婷1,2, 罗勇水1,2
作者信息 +

INVESTIGATION ON OPTIMIZATION OF AIRFLOW RESISTANCE OF INNER CAVITY OF LARGE WIND TURBINE BLADES BASED ON HOT AIR BOLWER DE-ICING TECHNOLOGY

  • Ma Pengnan, Wei Jiaxing1,2, Duan Heping1,2, Wang Gaozhan1,2, Jiang Tingting1,2, Luo Yongshui1,2
Author information +
文章历史 +

摘要

该文提出在叶片前缘腹板开孔优化叶片内腔流动阻力从而改善叶片除冰效果的方法。研究发现,前期开发的气热除冰系统在71.5 m长叶片中的工作流量仅1850 m3/h,热平衡时叶片外壁玻璃钢区域平均温度仅0.42 ℃,无法满足叶片的除冰需求,且鼓风机存在喘振风险。通过对不同开孔方案进行研究发现,前缘腹板的开孔直径分别为30、40、50、60 mm时,鼓风机的工作风量分别为2230、2553、2970、3397 m3/h,叶片外壁玻璃钢区域的平均温度分别为1.06、1.17、1.68、2.09 ℃。由于叶片外壁玻璃钢区域温度达到约2 ℃时具有较好的除冰效果,因此叶片前缘腹板开孔直径设计为60 mm。

Abstract

This investigaiton innovatively proposes a method to optimize the airflow resistance of the blade cavity and improve the de-icing effect of the blade by opening holes in the leading edge web of the blade. It is found that the working airflow rate of the hot air blower de-icing system developed in the early stage is only 1850 m3/h in the 71.5 m blade, and the average temperature of the glass reinforced plastic area of blade outer wall is only 0.42 ℃, which cannot meet the requirement of blade de-icing. In addition, the blower has a surge risk. Through the study of different hole-opening schemes, it is found that when the hole diameter of the leading edge web is 30, 40, 50, 60 mm, the working airflow rate of the blower is 2230, 2553, 2970, 3397 m3/h, and the average temperature of the glass reinforced plastic area of blade outer wall is 1.06, 1.17, 1.68, 2.09 ℃. As the temperature of the glass reinforced plastic area of blade outer wall reaches about 2 ℃, it can be considered to have a good de-icing effect. Thus the hole diameter of the leading edge web of the blade is designed to be 60 mm.

关键词

风电机组 / 计算流体动力学 / 数值分析 / 除冰 / 流动阻力

Key words

wind turbines / computational fluid dynamics / numerical analysis / de-icing / airflow resistance

引用本文

导出引用
马鹏楠, 魏家星, 端和平, 王杲展, 姜婷婷, 罗勇水. 基于气热除冰的大型风电机组叶片内腔流动阻力优化研究[J]. 太阳能学报. 2023, 44(10): 420-426 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0946
Ma Pengnan, Wei Jiaxing, Duan Heping, Wang Gaozhan, Jiang Tingting, Luo Yongshui. INVESTIGATION ON OPTIMIZATION OF AIRFLOW RESISTANCE OF INNER CAVITY OF LARGE WIND TURBINE BLADES BASED ON HOT AIR BOLWER DE-ICING TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 420-426 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0946
中图分类号: TK83   

参考文献

[1] 王之东, 袁凌, 王小虎, 等. 叶片覆冰对风电机组关键结构安全性的影响[J]. 水电能源科学, 2021, 39(5): 184-188.
WANG Z D, YUAN L, WANG X H, et al.Effect of blades icing on safety of key structures of wind turbine[J]. Water resources and power, 2021, 39(5): 184-188.
[2] MAGNUSON D C. Method and system for deicing wind turbine rotor blades with induced torque:US 8292579B2[P].2012-10-23.
[3] 王伟, 侯学杰, 管晓颖, 等. 风电叶片除冰技术的研究进展[J]. 玻璃钢/复合材料, 2014(1): 90-93, 7.
WANG W, HOU X J, GUAN X Y, et al.Research and development on de-icing technology of wind turbine blade[J]. Fiber reinforced plastics/composites, 2014(1): 90-93, 7.
[4] 李彬, 聂立军, 郭杰, 等. 吸能超双疏防覆冰涂层对风机叶片防覆冰影响研究[J]. 可再生能源, 2022, 40(2): 209-213.
LI B, NIE L J, GUO J, et al.Study on the influence of energy-absorbing super-amphiphobic coating on the anti-icing coating of fan blade[J]. Renewable energy resources, 2022, 40(2): 209-213.
[5] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38.
LI J, JIAO W C, WANG Y C, et al.Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta materiae compositae sinica, 2022, 39(1): 23-38.
[6] 舒立春, 戚家浩, 胡琴, 等. 风机叶片电加热除冰及电阻丝布置方式试验研究[J]. 中国电机工程学报, 2017, 37(13): 3816-3822.
SHU L C, QI J H, HU Q, et al.Experimental study on de-icing and layout of resistance wire by electrical heating for wind turbine blades[J]. Proceedings of the CSEE, 2017, 37(13): 3816-3822.
[7] 王延明, 倪爱清, 王继辉, 等. 电热元件-疏水涂层复合除冰系统的实验研究[J]. 玻璃钢/复合材料, 2016(8): 68-72.
WANG Y M, NI A Q, WANG J H, et al.Experimental study of hybrid de-icing systems combining thermoelectric and hydrophobic coatings[J]. Fiber reinforced plastics/composites, 2016(8): 68-72.
[8] LUO Y S, LIU J, CHEN Q, et al.Research of hot air blower de-icing technology for wind turbine blade[J]. Advances in engineering research, 2016, 63: 949-961.
[9] LUO Y S, LIU J A, CHEN Q, et al.Research control strategy of hot air blower de-icing system for MW wind turbine blade[J]. Advances in engineering research, 2017, 112: 275-284.
[10] 罗玉平, 舒禹, 黄宜健, 等. 风力发电机组叶片气热法防除冰系统设计[J]. 机械与电子, 2021, 39(1): 34-37, 42.
LUO Y P, SHU Y, HUANG Y J, et al.Design of antiicing/deicing system for wind turbine blades by air heating method[J]. Machinery & electronics, 2021, 39(1): 34-37, 42.
[11] 侯彬彬, 杨文涛, 周俊杰. 风电叶片气热抗冰系统理论设计及工程应用[J]. 玻璃钢/复合材料, 2019(4): 47-51, 57.
HOU B B, YANG W T, ZHOU J J.The theoretical design of hot-air heating anti-icing system and application in engineering practice[J]. Fiber reinforced plastics/composites, 2019(4): 47-51, 57.
[12] 杨博, 宁立伟, 魏克湘, 等. 基于汽热法风力机叶片除冰传热分析[J]. 玻璃钢/复合材料, 2018(4): 68-73.
YANG B, NING L W, WEI K X, et al.Heat transfer analysis of the de-icing system for wind turbine blades based on gas thermal[J]. Fiber reinforced plastics/composites, 2018(4): 68-73.
[13] 吕庆, 宁立伟, 魏克湘, 等. 风力机叶片气热除冰系统研究[J]. 玻璃钢/复合材料, 2017(9): 63-66.
LYU Q, NING L W, WEI K X, et al.Study on the gas thermal de-icing system of wind turbine blades[J]. Fiber reinforced plastics/composites, 2017(9): 63-66.
[14] 李岩, 董笑宇, 郭文峰, 等. 面向风力机叶片的平板超声微振动除冰[J]. 排灌机械工程学报, 2022, 40(2): 204-210.
LI Y, DONG X Y, GUO W F, et al.Ultrasonic micro-vibration deicing of flat plate for wind turbine blades[J]. Journal of drainage and irrigation machinery engineering, 2022, 40(2): 204-210.
[15] 董笑宇. 基于超声微振动的风力机叶片防除冰仿真与试验研究[D]. 哈尔滨: 东北农业大学, 2021.
DONG X Y.Simulation and experimental researches on anti-icing and de-icing of wind turbine blade based on ultrasonic micro-vibration[D]. Harbin: Northeast Agricultural University, 2021.
[16] DANILIUK V, XU Y M, LIU R B, et al.Ultrasonic de-icing of wind turbine blades: performance comparison of perspective transducers[J]. Renewable energy, 2020, 145: 2005-2018.
[17] WANG Y B, XU Y M, LEI Y Y.An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades[J]. Renewable energy, 2018, 118: 1015-1023.
[18] YIN C B, ZHANG Z D, WANG Z J, et al.Numerical simulation and experimental validation of ultrasonic de-icing system for wind turbine blade[J]. Applied acoustics, 2016, 114: 19-26.
[19] ZENG J, SONG B L.Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades[J]. Renewable energy, 2017, 113: 706-712.
[20] WANG Z J.Recent progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line and aircraft[J]. Energy and buildings, 2017, 140: 42-49.

基金

国家重点研发计划(2018YFB1501105)

PDF(2050 KB)

Accesses

Citation

Detail

段落导航
相关文章

/