太阳能热化学反应器多场耦合及协同优化研究

王沛, 李嘉宝, 周领, 刘德有

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 527-534.

PDF(2527 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2527 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 527-534. DOI: 10.19912/j.0254-0096.tynxb.2022-0952

太阳能热化学反应器多场耦合及协同优化研究

  • 王沛1,2, 李嘉宝2,3, 周领3, 刘德有3
作者信息 +

MULTI-FIELD COUPLING MODELING AND COOPERATIVE OPTIMIZATION OF SOLAR THERMAL CHEMICAL REACTOR

  • Wang Pei1,2, Li Jiabao2,3, Zhou Ling3, Liu Deyou3
Author information +
文章历史 +

摘要

以太阳能高温热化学反应器作为研究对象,针对甲烷还原氧化铈分解水制氢的两步法热化学循环过程,建立耦合光学、流动与传热、化学反应动力学及组分输运的多物理场模型,与实验结果对比验证模型精确性;研究各场之间的耦合机制及其对提升太阳能燃料转化效率的影响机理,提出太阳能反应器内的光-热-化学过程之间的协同优化方法。结果表明:甲烷氧化放热与氧化铈还原吸热互相作用使得催化剂温度存在波动;提高催化剂质量,同时辅以适当的光功率与反应物流量,反应物产率可得到进一步提升,太阳能-化学能转化效率最大可达到38.75%。

Abstract

A multi-physical field model of the solar reactor was established for a two-step thermochemical cycle of methane-reducing cerium oxide and water splitting. Model accuracy was verified by comparison with the experimental results. The coupling mechanism between various fields and its effect on improving the efficiency of solar fuel conversion were studied, and a cooperative optimization method among photothermal-chemical processes in the solar reactor was proposed. Results show that the temperature fluctuates due to the interaction between methane oxidation heat release and cerium oxide reduction heat absorption. Parameter sensitivity analysis shows that the yield of the reaction product can be improved with the increase of the reactor scale. The maximum solar-to-chemical efficiency can reach 38.75% under the condition of the optimal power and composition flow rate. This paper can provide a theoretical reference for the study of solar reactor mechanisms and amplification.

关键词

太阳能 / 热化学 / 反应器 / 数值模拟 / 多场耦合

Key words

solar energy / thermochemistry / reactor / numerical modeling / multi-field coupling

引用本文

导出引用
王沛, 李嘉宝, 周领, 刘德有. 太阳能热化学反应器多场耦合及协同优化研究[J]. 太阳能学报. 2022, 43(9): 527-534 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0952
Wang Pei, Li Jiabao, Zhou Ling, Liu Deyou. MULTI-FIELD COUPLING MODELING AND COOPERATIVE OPTIMIZATION OF SOLAR THERMAL CHEMICAL REACTOR[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 527-534 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0952
中图分类号: TK515   

参考文献

[1] 马天增, 付铭凯, 任婷, 等. 基于金属氧化物的两步法太阳能热化学循环制备燃料研究现状与展望[J]. 华电技术, 2021, 43(11): 110-127.
MA T Z, FU M K,REN T, et al.Review and prospects of two-step solar thermochemical cycle for preparing fuels based on metal oxides[J]. Huadian technology, 2021, 43(11): 110-127.
[2] YADAV D, BANERJEE R.A review of solar thermochemical processes[J]. Renewable & sustainable energy reviews, 2016, 54: 497-532.
[3] KOEPF E, ALXNEIT I, WIECKERT C, et al.A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute[J]. Applied energy, 2017, 188: 620-651.
[4] RAHMAN M A, PARVEJ A M, AZIZ M A.Concentrating technologies with reactor integration and effect of process variables on solar assisted pyrolysis: a critical review[J]. Thermal science and engineering progress, 2021, 25: 100957.
[5] STEINFELD A, BRACK M, MEIER A, et al.A solar chemical reactor for co-production of zinc and synthesis gas[J]. Energy, 1998, 23(10): 803-814.
[6] HAUETER P, MOELLER S, PALUMBO R, et al.The production of zinc by thermal dissociation of zinc oxide—solar chemical reactor design[J]. Solar energy, 1999, 67(1): 161-167.
[7] MÜLLER R, HAEBERLING P, PALUMBO R D. Further advances toward the development of a direct heating solar thermal chemical reactor for the thermal dissociation of ZnO(s)[J]. Solar energy, 2006, 80(5): 500-511.
[8] KANEKO H, MIURA T, FUSE A, et al.Rotary-type solar reactor for solar hydrogen production with two-step water splitting process[J]. Energy & fuels, 2007, 21(4): 2287-2293.
[9] FAN W K, TAHIR M.Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: a review[J]. Chemical engineering journal, 2022, 427: 131617.
[10] KOEPF E, VILLASMIL W, MEIER A.Pilot-scale solar reactor operation and characterization for fuel production via the Zn/ZnO thermochemical cycle[J]. Applied energy, 2016, 165: 1004-23.
[11] 常哲韶, 赵东明, 李鑫, 等. 10 kW高温太阳能热化学反应器及聚光器设计和数值模拟[J]. 太阳能学报, 2021, 42(10): 160-167 .
CHANG Z S, ZHAO D M, LU X, et al.Design and numerical simulation of 10 kW solar thermochemical reactor with secondary condenser[J]. Acta energiae solaris sinica, 2021, 42(10): 160-167.
[12] LIDOR A, FEND T, ROEB M, et al.High performance solar receiver-reactor for hydrogen generation[J]. Renewable energy, 2021, 179: 1217-32.
[13] HOES M, KOEPF E, DAVENPORT P, et al.Reticulated porous ceramic ceria structures with modified surface geometry for solar thermochemical splitting of water and carbon dioxide[C]//AIP Conference Proceedings, Jaipur, Rajasthan, India, 2019.
[14] FURLER P, STEINFELD A.Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling[J]. Chemical engineering science, 2015, 137: 373-383.
[15] HAEUSSLER A, ABANADES S, JULBE A, et al.Two-step CO2 and H2O splitting using perovskite-coated ceria foam for enhanced green fuel production in a porous volumetric solar reactor[J]. Journal of CO2 utilization, 2020, 41(5): 101257.
[16] HAEUSSLER A, ABANADES S, JULBE A, et al.Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor[J]. Energy, 2020, 201: 117649.
[17] CHUAYBOON S, ABANADES S, RODAT S.High-purity and clean syngas and hydrogen production from two-step CH4 reforming and H2O splitting through isothermal ceria redox cycle using concentrated sunlight[J]. Frontiers in energy research, 2020, 8: 128.
[18] HAEUSSLER A, ABANADES S, JULBE A, et al.Remarkable performance of microstructured ceria foams for thermochemical splitting of H2O and CO2 in a novel high-temperature solar reactor[J]. Chemical engineering research and design, 2020, 156: 311-323.
[19] JIN J, WEI X, LIU M K, et al.A solar methane reforming reactor design with enhanced efficiency[J]. Applied energy, 2018, 226: 797-807.
[20] LOUGOU B G, SHUAI Y, PAN R M, et al.Heat transfer and fluid flow analysis of porous medium solar thermochemical reactor with quartz glass cover[J]. International journal of heat and mass transfer, 2018, 127: 61-74.
[21] NAIR M M, ABANADES S.Tailoring hybrid nonstoichiometric ceria redox cycle for combined solar methane reforming and thermochemical conversion of H2O/CO2[J]. Energy & fuels, 2016, 30(7): 6050-6058.
[22] PANLENER R J, BLUMENTHAL R N, GARNIER J E.A thermodynamic study of nonstoichiometric cerium dioxide[J]. Journal of physics and chemistry of solids, 1975, 36(11): 1213-1222.
[23] CHUEH W C, MCDANIEL A H, GRASS M E, et al.Highly enhanced concentration and stability of reactive Ce3+ on doped CeO2 surface revealed in operando[J]. Chemistry of materials, 2012, 24(10): 1876-1882.
[24] CHUEH W C, FALTER C, ABBOTT M, et al.High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science, 2010, 330(6012): 1797-1801.
[25] FURLER P, STEINFELD A.Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling[J]. Chemical engineering science, 2015, 137: 373-383.
[26] WARREN K J, CARRILLO R J, GREEK B, et al.Solar reactor demonstration of efficient and selective syngas production via chemical-looping dry reforming of methane over ceria[J]. Energy technology, 2020, 8(6): 2000053.

基金

国家重点研发计划(2022YFE0101600)

PDF(2527 KB)

Accesses

Citation

Detail

段落导航
相关文章

/