基于自适应模型预测控制的大型风电机组MPPT方法

田德, 周臣凯, 唐世泽, 周强, 黄明月, 邓英

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 501-508.

PDF(3277 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3277 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 501-508. DOI: 10.19912/j.0254-0096.tynxb.2022-0958

基于自适应模型预测控制的大型风电机组MPPT方法

  • 田德, 周臣凯, 唐世泽, 周强, 黄明月, 邓英
作者信息 +

MPPT METHOD FOR LARGE WIND TURBINES BASED ON ADAPTIVE MODEL PREDICTIVE CONTROL

  • Tian De, Zhou Chenkai, Tang Shize, Zhou Qiang, Huang Mingyue, Deng Ying
Author information +
文章历史 +

摘要

综合叶尖速比法和自适应模型预测控制提出风电机组最大功率点跟踪策略优化方法。根据动力学方程建立适用于控制器设计的风电机组状态空间模型。基于卡尔曼滤波算法估计有效风速,进而求解出最优转速参考值,并作为预测模型自适应准则的基础。制定预测模型的风速自适应准则,解决传统模型预测控制中的模型错配问题。仿真结果表明改进后的最大功率点跟踪策略能增强系统的鲁棒性、提高风能捕获效率、降低电磁转矩波动。

Abstract

The optimization method of the maximum power point tracking strategy for wind turbines is proposed by combining the tip speed ratio method and the adaptive model predictive control. According to the dynamic equation, the state-space model of wind turbine which is suitable for controller design is established. The effective wind speed is estimated based on the Kalman filter to obtain the optimal rotational speed reference value which is used to develop the adaptive criterion of the prediction model. The wind speed adaptation criteria is formulated for the prediction model to solve the mismatch problem in traditional model predictive control. It is shown in the simulation result that the proposed maximum power point tracking strategy can enhance the capture efficiency of wind energy, mitigate the electromagnetic torque fluctuation, and improve the robustness of the system.

关键词

风电机组 / 最大功率点跟踪器 / 模型预测控制 / 卡尔曼滤波器 / 转矩控制

Key words

wind turbines / maximum power point trackers / model predictive control / Kalman filters / torque control

引用本文

导出引用
田德, 周臣凯, 唐世泽, 周强, 黄明月, 邓英. 基于自适应模型预测控制的大型风电机组MPPT方法[J]. 太阳能学报. 2023, 44(6): 501-508 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0958
Tian De, Zhou Chenkai, Tang Shize, Zhou Qiang, Huang Mingyue, Deng Ying. MPPT METHOD FOR LARGE WIND TURBINES BASED ON ADAPTIVE MODEL PREDICTIVE CONTROL[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 501-508 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0958
中图分类号: TM614   

参考文献

[1] 赵骞, 邵一川, 姚兴佳, 等. 风电机组基于最优跟踪路径的改进型MPPT控制[J]. 中国电机工程学报, 2020, 40(1): 282-289, 394.
ZHAO Q, SHAO Y C, YAO X J, et al.Improved MPPT control of wind turbine based on optimal tracking path[J]. Proceedings of the CSEE, 2020, 40(1): 282-289, 394.
[2] MOUSA H, YOUSSEF A R, MOHAMED E.State of the art perturb and observe MPPT algorithms based wind energy conversion systems: a technology review[J]. International journal of electrical power & energy systems, 2021, 126: 106598.
[3] UDDIN M N, AMIN I K.Adaptive step size based hill-climb search algorithm for MPPT Control of DFIG-WECS with reduced power fluctuation and improved tracking performance[J]. Electric power components & systems, 2018, 46(16-20): 2203-2214.
[4] CORTES-VEGA D, ORNELAS-TELLEZ F, ANZUREZ-MARIN J.Comparative analysis of MPPT techniques and optimal control for a PMSG-based WECS[C]//2019 IEEE 4th Colombian Conference on Automatic Control, Medellin, Colombia, 2019.
[5] 许利通, 程明, 魏新迟,等. 考虑损耗的无刷双馈风力发电系统功率反馈法最大功率点跟踪控制[J]. 电工技术学报, 2020, 35(3): 472-480.
XU L T, CHENG M, WEI X C, et al.Power signal feedback control of maximum power point tracking control for brushless Doubly-Fed wind power generation system considering loss[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 472-480.
[6] 苏勋文, 徐殿国, 杨荣峰, 等. 考虑温度和湿度的风机最大功率跟踪控制[J]. 电工技术学报, 2017, 32(13): 210-218.
SU X W, XU D G, YANG R F, et al.Maximum power point tracking control of wind turbine considering temperature and humidity[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 210-218.
[7] KHAN M J, MATHEW L.Comparative study of optimization techniques for renewable energy system[J]. Archives of computational methods in engineering, 2020, 27: 351-360.
[8] DENG X F, YANG J, SUN Y, et al.An effective wind speed estimation based extended optimal torque control for maximum wind energy capture[J]. IEEE access, 2020, 8: 65959.
[9] YIN M, LI W, CHI Y C, et al.An optimal torque control based on effective tracking range for maximum power point tracking of wind turbines under varying wind conditions[J]. IET renewable power generation, 2017, 11(4): 501-510.
[10] MALIK M Z, BALOCH M H, GUL M, et al.A research on conventional and modern algorithms for maximum power extraction from wind energy conversion system: a review[J]. Environmental science and pollution research, 2021, 28(5): 5020-5035.
[11] ASGHAR A B, LIU X.Adaptive neuro-fuzzy algorithm to estimate effective wind speed and optimal rotor speed for variable-speed wind turbine[J]. Neurocomputing, 2017, 272: 495-504.
[12] 李娟, 张克兆, 李生权, 等. 最佳叶尖速比的最大功率自抗扰跟踪控制[J]. 电机与控制学报, 2015, 19(12): 94-100, 106.
LI J. ZHANG K Y, LI S Q, et al.Maximum power point tracking control with active disturbance rejection controller based on the best tip speed ratio[J]. Electric machines and control, 2015, 19(12): 94-100, 106.
[13] SABZEVARI S,KARIMPOUR A, MONFARED M, et al.MPPT control of wind turbines by direct adaptive Fuzzy-PI controller and using ANN-PSO wind speed estimator[J]. Journal of renewable and sustainable energy, 2017, 9(1): 013302.
[14] 焦绪国, 杨秦敏, 孙勇, 等. 基于有效风速估计与预测的风电机组自适应最大风能跟踪控制[J]. 控制理论与应用, 2019, 36(3): 372-382.
JIAO X G, YANG Q M, SUN Y, et al.Adaptive maximum power point tracking control for wind turbines with effective wind speed estimation & prediction[J]. Control theory & applications, 2019, 36(3): 372-382.
[15] SONG D R, YANG J, CAI Z L, et al.Wind estimation with a non-standard extended Kalman filter and its application on maximum power extraction for variable speed wind turbines[J]. Applied energy, 2017, 190: 670-685.
[16] 韩兵, 周腊吾, 陈浩, 等. 大型风电机组激光雷达辅助模型预测控制方法[J]. 中国电机工程学报, 2016, 36(18): 5062-5069, 5131.
HAN B, ZHOU L W, CHEN H, et al.Approach to model predictive control of large wind turbine using light detection and ranging measurements[J]. Proceedings of the CSEE, 2016, 36(18): 5062-5069, 5131.
[17] GHANBARPOUR K, BAYAT F, JALILVAND A.Dependable power extraction in wind turbines using model predictive fault tolerant control[J]. International journal of electrical power & energy systems, 2020, 118: 1-12.
[18] GAUTERIN E, KAMMERER P, KÜHN M, et al. Effective wind speed estimation: comparison between Kalman filter and Takagi-Sugeno observer techniques[J]. ISA transactions, 2016, 62: 60-72.

基金

国家重点研发计划(2018YFB1501304)

PDF(3277 KB)

Accesses

Citation

Detail

段落导航
相关文章

/