基于改进鲸鱼算法的太阳能热发电站镜场优化布置

高博, 孙浩, 刘盛

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 209-217.

PDF(4617 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4617 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 209-217. DOI: 10.19912/j.0254-0096.tynxb.2022-0973

基于改进鲸鱼算法的太阳能热发电站镜场优化布置

  • 高博, 孙浩, 刘盛
作者信息 +

HELIOSTAT FIELD LAYOUT OPTIMIZATION OF SOLAR TOWER POWER STATION BASED ON IMPROVED WHALE ALGORITHM

  • Gao Bo, Sun Hao, Liu Sheng
Author information +
文章历史 +

摘要

针对塔式太阳能热发电系统中定日镜布局优化问题,以无遮挡(EB)布局模型为基础,建立光热电站定日镜场光学效率模型,通过与SolarPILOT对相同坐标数据的定日镜场进行效率计算,证明光学效率建模的准确性。通过在种群初始化时加入Kent映射,在迭代过程中添加动态双子群收敛因子、自适应精英非均匀变异、自适应惯性权重得到混合策略鲸鱼优化算法,同时引入非支配排序和拥挤度计算使算法适用于多目标优化问题,最后结合Gemasolar电站的数据以单目标和双目标分别优化EB布局中的关键参数(方位间距因子和极限重置因子),得到最优布局方案。

Abstract

Aiming at the optimization of heliostat layout in solar tower power generation system, an optical efficiency model of heliostat field in solar tower power station is established based on eliminate blocking (EB) layout model. The efficiency calculation of heliostat field with the same coordinate data as SolarPILOT proves the accuracy of the modeling of optical efficiency. By adding Kent mapping during population initialization, adding dynamic double subgroup convergence factor, adaptive elite non-uniform mutation strategy, and adaptive inertia weight in the iterative process, the hybrid strategy whale optimization algorithm is obtained. At the same time, non-dominated sorting and crowding calculation are introduced to make the algorithm suitable for multi-objective optimization problems. Finally, the key parameters (azimuth spacing factor and azimuth spacing reset limit factor) in EB layout are optimized with single target and double target respectively in combination with Gemasolar power plant data, and the optimal layout scheme is obtained.

关键词

塔式太阳能热发电站 / 定日镜场 / 鲸鱼优化算法 / 光学效率 / 优化布置

Key words

solar tower power station / heliostat field / whale optimization algorithm / optical efficiency / optimized layout

引用本文

导出引用
高博, 孙浩, 刘盛. 基于改进鲸鱼算法的太阳能热发电站镜场优化布置[J]. 太阳能学报. 2023, 44(10): 209-217 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0973
Gao Bo, Sun Hao, Liu Sheng. HELIOSTAT FIELD LAYOUT OPTIMIZATION OF SOLAR TOWER POWER STATION BASED ON IMPROVED WHALE ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 209-217 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0973
中图分类号: TK513.1   

参考文献

[1] 徐玫, 王晓, 肖斌, 等. 塔式太阳能热发电系统性能模型及其仿真研究[J]. 太阳能学报, 2022, 43(2): 238-245.
XU M, WANG X, XIAO B, et al.Performance model and simulation study of solar power tower system[J]. Acta energiae solaris sinica, 2022, 43(2): 238-245.
[2] 张茂龙, 卫慧敏, 杜小泽, 等. 塔式太阳能镜场阴影与遮挡效率的改进算法[J]. 太阳能学报, 2016, 37(8): 1998-2003.
ZHANG M L, WEI H M, DU X Z, et al.Modified algorithm of shadow and blocking efficiency for heliostat field of solar power tower[J]. Acta energiae solaris sinica, 2016, 37(8): 1998-2003.
[3] ATIF M, AL-SULAIMAN F A . Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm[J]. Energy conversion and management, 2015, 95: 1-9.
[4] LI C, ZHAI R, LIU H T, et al.Optimization of a heliostat field layout using hybrid PSO-GA algorithm[J]. Applied thermal engineering, 2018, 128: 33-41.
[5] ARRIF T, BENCHABANE A, GERMOUI M, et al.Optimisation of heliostat field layout for solar power tower systems using Iterative artificial bee colony algorithm: a review and case study[J]. International journal of ambient energy, 2021, 42(1): 65-80.
[6] 程小龙, 尹延国, 马少波. 塔式电站定日镜场布局的优化设计研究[J]. 能源与环境, 2018(2): 64-66, 70.
CHENG X L, YIN Y G, MA S B. study on optimal design of heliostat field layout in tower power station[J]. Energy and environment, 2018(2): 64-66, 70.
[7] 陆永亚. 塔式定日镜受风载荷和跟踪误差影响的聚光效率特性研究[D]. 重庆: 重庆大学, 2013.
LU Y Y.Focusing efficiency characteristics of the tower heliostat under the influence of wind load and tracking error[D]. Chongqing: Chongqing University, 2013.
[8] LI C, ZHAI R R, YANG Y P.Optimization of a heliostat field layout on annual basis using a hybrid algorithm combining particle swarm optimization algorithm and genetic algorithm[J]. Energies, 2017, 10(11): 1924.
[9] 张春琳, 周志伟, 陈昕, 等. 塔槽耦合光热系统镜场效率研究[J]. 热力发电, 2022, 51(5): 41-47.
ZHANG C L, ZHOU Z W, CHEN X, et al.Study on optical efficiency of tower slot coupling solar thermal ppower generation system[J]. Thermal power generation,2022, 51(5): 41-47.
[10] WANG J X, DUAN L Q, YANG Y P.An improvement crossover operation method in genetic algorithm and spatial optimization of heliostat field[J]. Energy, 2018: 15-28.
[11] 汤安迪, 韩统, 徐登武, 等. 混沌多精英鲸鱼优化算法[J]. 北京航空航天大学学报, 2021, 47(7): 1481-1494.
TANG A D,HAN T,XU D W, et al.Chaotic multi-leader whale optimization algorithm[J]. Jounal of Beijing University Aeronautics and Astronautics, 2021, 47(7): 1481-1494.
[12] 郝晓弘, 宋吉祥, 周强, 等. 混合策略改进的鲸鱼优化算法[J]. 计算机应用研究, 2020, 37(12): 3622-3626, 3655.
HAO X H, SONG J X, ZHOU Q, et al.Improved whale optimization algorithm based on hybrid strategy[J]. Application research of computers, 2020, 37(12): 3622-3626, 3655.
[13] 刘继忠, 谢毓顺, 徐文斌, 等. 采用动态双子群策略改进的灰狼算法及其在心电信号识别中的应用[J]. 传感技术学报, 2021, 34(3): 420-426.
LIU J Z, XIE Y S, XU W B, et al.An improved grey wolf algorithm based on dynamic double-subgroup strategy and its application in ECG recognition[J]. Chinese journal of sensors and actuators, 2021, 34(3): 420-426.
[14] LI M D, XU G H, FU Y W, et al.Improved whale optimization algorithm based on variable spiral position update strategy and adaptive inertia weight[J]. Journal of intelligent & fuzzy systems: applications in engineering and technology, 2022, 42(3): 1501-1517.
[15] 银星黎. 基于改进多目标鲸鱼算法的水库群供水-发电-生态优化调度研究[D]. 武汉: 华中科技大学, 2019.
YIN X L.Research on water supply-generation-ecological optimization scheduling of reservoir group based on modified version of multi-objective whale optimization algorithm[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[16] 满兴中. 基于改进鲸鱼优化算法的多目标环境经济调度研究[D]. 重庆: 重庆邮电大学, 2021.
MAN X Z.Research on multi-objective environmental economic dispatch based on imporved whale optimization algorithm[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2021.
[17] COLLADO F J, GUALLAR J.A review of optimized design layouts for solar power tower plants with campo code[J]. Renewable and sustainable energy reviews, 2013, 2013, 20: 142-154

基金

国家重点研发计划(SQ2020YFF0413296)

PDF(4617 KB)

Accesses

Citation

Detail

段落导航
相关文章

/