高电流密度下薄膜PEMFC自润湿特性研究

陈小松, 朱瑞杰, 宋浩, 舒展宏, 张恒, 詹志刚

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 564-571.

PDF(2427 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2427 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 564-571. DOI: 10.19912/j.0254-0096.tynxb.2022-0992

高电流密度下薄膜PEMFC自润湿特性研究

  • 陈小松1, 朱瑞杰1, 宋浩1, 舒展宏1, 张恒1,2, 詹志刚1,2
作者信息 +

STUDY ON SELF-HUMIDIFYING PROPERTIES OF THIN-MEMBRANE PEMFC AT HIGH CURRENT DENSITY

  • Chen Xiaosong1, Zhu Ruijie1, Song Hao1, Shu Zhanhong1, Zhang Heng1,2, Zhan Zhigang1,2
Author information +
文章历史 +

摘要

为研究薄膜质子交换膜燃料电池在高电流密度下的自润湿特性,使用FLUENT建立三维多物理场稳态模型,并用实验结果验证模型的可靠性。研究发现:随着电流密度的增加,水分布均匀性会提高,1200 mA/cm2为薄膜可实现自润湿的电流密度临界点,高于此电流密度时薄膜中可实现良好的自润湿。在高电流密度下,阴极的加湿会加剧局部水淹现象并导致电池性能下降。降低温度、增加背压及减小膜厚会提升膜的自润湿特性,且膜厚对薄膜的自润湿特性影响最为显著。

Abstract

To study self-humidifying properties of thin-membrane proton exchange membrane fuel cells at high current density, a three-dimensional, multi-physical steady-state model is established via FLUENT in this study. The simulation results are validated by the experimental data to ensure the reliability of the present model. It is found that with the increase of current density, the uniformity of water vapor distribution is improved. The critical point of the self-humidifying current density of the thin-membrane is 1200 mA/cm2, and the self-humidifying in the thin-membrane can be achieved well. The external humidification of the cathode aggravates the local flooding phenomenon and leads to the degradation of the cell performance at high current density. Decreasing the temperature and membrane thickness, increasing the operation pressure can improve the self-humidifying properties of the membrane. The thickness of membrane has the most significant effect on the self-humidifying properties of the thin-membrane.

关键词

质子交换膜燃料电池 / 水含量 / 高电流密度 / 自润湿 / 薄膜

Key words

PEMFC / water content / high current density / self-humidifying / thin-membrane

引用本文

导出引用
陈小松, 朱瑞杰, 宋浩, 舒展宏, 张恒, 詹志刚. 高电流密度下薄膜PEMFC自润湿特性研究[J]. 太阳能学报. 2023, 44(10): 564-571 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0992
Chen Xiaosong, Zhu Ruijie, Song Hao, Shu Zhanhong, Zhang Heng, Zhan Zhigang. STUDY ON SELF-HUMIDIFYING PROPERTIES OF THIN-MEMBRANE PEMFC AT HIGH CURRENT DENSITY[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 564-571 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0992
中图分类号: TM911.4   

参考文献

[1] LEE F C, ISMAIL M S, INGHAM D B, et al.Alternative architectures and materials for PEMFC gas diffusion layers: a review and outlook[J]. Renewable and sustainable energy reviews, 2022, 166: 112640.
[2] ELWAN H A, MAMLOUK M, SCOTT K.A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells[J]. Journal of power sources, 2021, 484: 229197.
[3] CHENG Z Y, LUO L Z, HUANG B, et al.Effect of humidification on distribution and uniformity of reactants and water content in PEMFC[J]. International journal of hydrogen energy, 2021, 46(52): 26560-26574.
[4] CHANG Y F, QIN Y Z, YIN Y, et al.Humidification strategy for polymer electrolyte membrane fuel cells: a review[J]. Applied energy, 2018, 230: 643-662.
[5] LIAN Y S, YOU C T, ZHU Z C, et al.Preparation and performance of a self-humidifying fuel cell using a fiber sintered sheet as flow field[J]. Journal of power sources, 2022, 536: 231513.
[6] GELLETT W L, DUNWOODY D C, LEDDY J.Window gasketing for self humidified H2|O2 and H2 |air polymer electrolyte membrane fuel cells fed dry gases[J]. Journal of electroanalytical chemistry, 2020, 875: 114695.
[7] KONG I M, CHOI J W, KIM S I, et al.Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer[J]. Applied energy, 2015, 145: 345-353.
[8] OH K, KWON O, SON B, et al.Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition[J]. Journal of membrane science, 2019, 583: 103-109.
[9] SHAO Y B, XU L F, ZHAO X W, et al.Comparison of self-humidification effect on polymer electrolyte membrane fuel cell with anodic and cathodic exhaust gas recirculation[J]. International journal of hydrogen energy, 2020, 45(4): 3108-3122.
[10] ZHAO X W, XU L F, FANG C, et al.Study on voltage clamping and self-humidification effects of pem fuel cell system with dual recirculation based on orthogonal test method[J]. International journal of hydrogen energy, 2018, 43(33): 16268-16278.
[11] WANG J A, WANG B W, TONGSH C, et al.Combining proton and anion exchange membrane fuel cells for enhancing the overall performance and self-humidification[J]. Chemical engineering journal, 2022, 428: 131969.
[12] SUBIN K, JITHESH P K.Experimental study on self-humidified operation in PEM fuel cells[J]. Sustainable energy technologies and assessments, 2018, 27: 17-22.
[13] LI Y B, ZHOU Z F, LIU X L, et al.Modeling of PEM fuel cell with thin MEA under low humidity operating condition[J]. Applied energy, 2019, 242: 1513-1527.
[14] SHIN S, MAIYALAGAN T, JOTHI V R, et al.Numerical analysis on transport properties of self-humidifying dual catalyst layer via 3-D reconstruction technique[J]. International journal of hydrogen energy, 2021, 46(27): 14639-14650.
[15] 游志宇, 邵仕泉, 刘涛, 等. 空冷自增湿燃料电池最优控制方法研究[J]. 太阳能学报, 2019, 40(1): 259-267.
YOU Z Y, SHAO S Q, LIU T, et al.Study on optimal control method for self-humidifying fuel cell with air-cooled[J]. Acta energiae solaris sinica, 2019, 40(1): 259-267.
[16] FAN L H, ZHANG G B, JIAO K.Characteristics of PEMFC operating at high current density with low external humidification[J]. Energy conversion and management, 2017, 150: 763-774.
[17] 王智捷, 谭金婷, 詹志刚, 等. 燃料电池薄膜在不同电流密度下的水传递规律[J]. 科学通报, 2019, 64(21): 2254-2261.
WANG Z J, TAN J T, ZHAN Z G, et al.Water transport law of fuel cell membranes at different current densities[J]. Chinese science bulletin, 2019, 64(21): 2254-2261.
[18] HOUREH N B, SHOKOUHMAND H, AFSHARI E.Effect of inserting obstacles in flow field on a membrane humidifier performance for PEMFC application: a CFD model[J]. International journal of hydrogen energy, 2019, 44(57): 30420-30439.
[19] YU Y A, ZHAN Z G, HE L Y, et al.Effects of distribution zone design on flow uniformity and pressure drop in PEMFC[J]. Journal of the Electrochemical Society, 2021, 168(9): 094505.
[20] MIN C H, HE Y L, LIU X L, et al.Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation[J]. Journal of power sources, 2006, 160(1): 374-385.
[21] SHI J R, ZHAN Z G, ZHANG D, et al.Effects of cracks on the mass transfer of polymer electrolyte membrane fuel cell with high performance membrane electrode assembly[J]. Journal of Wuhan University of Technology-material science edition, 2021, 36(3): 318-330.

基金

国家自然科学基金(22179103); 佛山仙湖实验室开放基金重点项目(XHD2020-002)

PDF(2427 KB)

Accesses

Citation

Detail

段落导航
相关文章

/