退役动力电池多场景梯次利用优化研究

许青, 滕婕

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 541-549.

PDF(1726 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1726 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 541-549. DOI: 10.19912/j.0254-0096.tynxb.2022-1004

退役动力电池多场景梯次利用优化研究

  • 许青, 滕婕
作者信息 +

MULTI-SCENE CASCADE UTILIZATION OPTIMIZATION OF RETIRED POWER BATTERY

  • Xu Qing, Teng Jie
Author information +
文章历史 +

摘要

为提高退役动力电池的利用率和经济效益。提出一种基于多场景应用的退役电池优化配置及经济运行研究方法,该方法根据退役动力电池剩余可用容量,依次参与不同应用场景,以年净收益最大为目标函数,构建多场景联合梯次利用优化配置和投资回收期模型,并利用改进鲸鱼算法进行求解。最后,仿真结果表明:多场景梯次利用可有效提高退役电池经济效益和缩短投资回收期,相比风/光伏电站单一场景,其年净收益提高了3.378倍,投资回收期缩短了10.774 a。

Abstract

In order to improve the utilization rate and economic benefit of retired power battery, this paper proposes a research method of optimal allocation and economic operation of retired battery based on multi-scenario application. According to the remaining available capacity of retired power battery, this method participates in different application scenarios in turn, and takes the maximum annual net income as objective function to build multi-scenario joint echelon utilization optimal allocation and investment payback period model. The improved Whale algorithm is used to solve the problem. Finally, the simulation results show that the multi-scenario stepwise utilization can effectively improve the economic benefits of retired batteries and shorten the payback period of investment. Compared with the single scenario of wind/photovoltaic power station, the annual net income is increased by 3.378 times and the payback period is shortened by 10.774 years.

关键词

储能 / 退役电池 / 梯次利用 / 经济效益 / 改进鲸鱼算法 / 投资回收期

Key words

energy storage / retired battery / echelon utilization / economic benefits / improved whale algorithm / investment payback period

引用本文

导出引用
许青, 滕婕. 退役动力电池多场景梯次利用优化研究[J]. 太阳能学报. 2023, 44(10): 541-549 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1004
Xu Qing, Teng Jie. MULTI-SCENE CASCADE UTILIZATION OPTIMIZATION OF RETIRED POWER BATTERY[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 541-549 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1004
中图分类号: TK513.5   

参考文献

[1] 来小康. 关于动力电池梯次利用的一些思考[J]. 储能科学与技术, 2020, 9(2): 598-602.
LAI X K.Opinions on the reuse of retired power batteries[J]. Energy storage science and technology, 2020, 9(2): 598-602.
[2] 韩路, 贺狄龙, 刘爱菊, 等. 动力电池梯次利用研究进展[J]. 电源技术, 2014, 38(3): 548-550.
HAN L, HE D L, LIU A J, et al.Advances in secondary use research of power Li-ion battery[J]. Chinese journal of power sources, 2014, 38(3): 548-550.
[3] 谢宝江, 娄伟明, 罗扬帆, 等. 基于H无迹卡尔曼滤波的退役锂离子电池SOC估计[J]. 浙江电力, 2020, 39(8): 53-60.
XIE B J, LOU W M, LUO Y F, et al.SOC estimation of decommissioned lithium-ion batteries based on H unscented Kalman filter[J]. Zhejiang electric power, 2020, 39(8): 53-60.
[4] 李建林, 李雅欣, 吕超, 等. 碳中和目标下退役电池筛选聚类关键技术研究[J]. 电网技术, 2022, 46(2): 429-441.
LI J L, LI Y X, LYU C, et al.Key technology of retired batteries’ screening and clustering under target of carbon neutrality[J]. Power system technology, 2022, 46(2): 429-441.
[5] 贾晓峰, 冯乾隆, 陶志军, 等. 动力电池梯次利用场景与回收技术经济性研究[J]. 汽车工程师, 2018(6): 14-19.
JIA X F, FENG Q L, TAO Z J, et al.Study on the echelon used scenario and technical recycling economy of power battery[J]. Auto engineer, 2018(6): 14-19.
[6] 王维. 动力电池梯次开发利用及经济性研究[D]. 北京: 华北电力大学, 2015.
WANG W.Research on the cascade utilization and economy of power battery[D]. Beijing: North China Electric Power University, 2015.
[7] KAMATH D, ARSENAULT R, KIM H C, et al.Economic and environmental feasibility of second-life lithium-ion batteries as fast-charging energy storage[J]. Environmental science & technology, 2020, 54(11): 6878-6887.
[8] 马玲, 魏成伟, 谢丽蓉, 等. 基于退役动力电池的风储有功功率协调控制策略[J]. 太阳能学报, 2021, 42(10): 437-443.
MA L, WEI C W, XIE L R, et al.Coordinated control strategy for wind storage active power of decommissioned power battery[J]. Acta energiae solaris sinica, 2021, 42(10): 437-443.
[9] 樊国旗, 吕盼, 樊国伟, 等. 退役电池梯次利用对新能源消纳影响的研究[J]. 浙江电力, 2021, 40(3): 121-126.
FAN G Q, LYU P, FAN G W, et al.Effect of second-use of retired batteries on new energy consumption[J]. Zhejiang electric power, 2021, 40(3): 121-126.
[10] 崔传世, 谢丽蓉, 包洪印, 等. 平抑风电功率波动退役电池储能系统容量配置[J]. 电源技术, 2020, 44(8): 1185-1190.
CUI C S, XIE L R, BAO H Y, et al.Capacity configuration of retired battery energy storage system for smoothing wind power fluctuations[J]. Chinese journal of power sources, 2020, 44(8): 1185-1190.
[11] 孙舟, 田贺平, 王伟贤, 等. 梯次利用电池储能系统参与用户侧削峰填谷的经济性研究[J]. 太阳能学报, 2021, 42(4): 95-100.
SUN Z, TIAN H P, WANG W X, et al.Research on economy of echelon utilization battery energy storage system for user-side peak load shifting[J]. Acta energiae solaris sinica, 2021, 42(4): 95-100.
[12] 李雄, 李培强. 梯次利用动力电池规模化应用经济性及经济边界分析[J]. 储能科学与技术, 2022, 11(2): 717-725.
LI X, LI P Q.Analysis of economics and economic boundaries of large-scale application of power batteries in cascade utilization[J]. Energy storage science and technology, 2022, 11(2): 717-725.
[13] 刘坚. 电动汽车退役电池储能应用潜力及成本分析[J]. 储能科学与技术, 2017, 6(2): 243-249.
LIU J.Second use potential of retired EV batteries in power system and associated cost analysis[J]. Energy storage science and technology, 2017, 6(2): 243-249.
[14] 许欣慧, 舒征宇, 李世春. 基于退役电池在多储能场景下梯级利用的经济运行研究[J]. 智慧电力, 2020, 48(12): 58-64.
XU X H, SHU Z Y, LI S C.Research on economic operation of retired batteries cascade utilization in multiple energy storage scenarios[J]. Smart power, 2020, 48(12): 58-64.
[15] 赵伟, 闵婕, 李章溢, 等. 基于一致性模型的梯次利用锂离子电池组能量利用率估计方法[J]. 电工技术学报, 2021, 36(10): 2190-2198.
ZHAO W, MIN J, LI Z Y, et al.Energy utilization efficiency estimation method for second-use lithium-ion battery packs based on a battery consistency model[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2190-2198.
[16] 戴瑞海, 林雁, 林启待, 等. 基于模型预测控制平抑光伏输出功率波动的储能充放电策略[J]. 智慧电力, 2019, 47(4): 8-15, 52.
DAI R H, LIN Y, LIN Q D, et al.Strategy of energy storage for PV power smoothing based on model predictive control[J]. Smart power, 2019, 47(4): 8-15, 52.
[17] 赵伟, 袁锡莲, 周宜行, 等. 考虑运行寿命内经济性最优的梯次电池储能系统容量配置方法[J]. 电力系统保护与控制, 2021, 49(12): 16-24.
ZHAO W, YUAN X L, ZHOU Y X, et al.Capacity configuration method of a second-use battery energy storage system considering economic optimization within service life[J]. Power system protection and control, 2021, 49(12): 16-24.
[18] 刘吉臻, 姚琦, 柳玉, 等. 风火联合调度的风电场一次调频控制策略研究[J]. 中国电机工程学报, 2017, 37(12): 3462-3469, 3674.
LIU J Z, YAO Q, LIU Y, et al.Wind farm primary frequency control strategy based on wind & thermal power joint control[J]. Proceedings of the CSEE, 2017, 37(12): 3462-3469, 3674.
[19] 严干贵, 冯晓东, 李军徽, 等. 用于松弛调峰瓶颈的储能系统容量配置方法[J]. 中国电机工程学报, 2012, 32(28): 27-35, 22.
YAN G G, FENG X D, LI J H, et al.Optimization of energy storage system capacity for relaxing peak load regulation bottlenecks[J]. Proceedings of the CSEE, 2012, 32(28): 27-35, 22.
[20] 白丽丽, 姜封国, 周玉明, 等. 基于改进鲸鱼算法的结构可靠性优化设计[J/OL]. 吉林大学学报(工学版),DOI:10.13229/j.cnki.jdxbgxb20211421.
BAI L L, JIANG F G, ZHOU Y M, et al.Structural reliability optimization design based on improved whale algorithm[J/OL]. Journal of Jilin university(engineering and technology edition)DOI:10.13229/j.cnki.jdxbgxb20211421.
[21] 刘喜梅, 白恺, 邓春, 等. 大型风电项目平准化成本模型研究[J]. 可再生能源, 2016, 34(12): 1853-1858.
LIU X M, BAI K, DENG C, et al.Research on levelized cost of energy model of large-scale wind power projects[J]. Renewable energy resources, 2016, 34(12): 1853-1858.
[22] 秦文龙. 基于改进鲸鱼算法的光伏发电系统MPPT控制研究[D]. 曲阜: 曲阜师范大学, 2021.
QIN W L.Research on MPPT control of photovoltaic power generation system based on improved whale algorithm[D]. Qufu: Qufu Normal University, 2021.
[23] 国家发展改革委. 国家发展改革委关于进一步完善分时电价机制的通知[EB/OL].https://www.ndrc.gov.cn/xxgk/zcfb/tz/202107/t20210729_1292067.html?code= & state = 123.
National Development and Reform Commission. Notice of national development and reform commission on further improving TOU pricing mechanism[EB/OL].https://www.ndrc.gov.cn/xxgk/zcfb/tz/202107/t20210729_1292067.html?code= & state = 123.

基金

国网甘肃省电力公司专项研究项目(W22FZ2730020)

PDF(1726 KB)

Accesses

Citation

Detail

段落导航
相关文章

/