真空绝热玻璃是绿色节能建筑的关键组成部分。目前,传统真空玻璃(VG)存在众多问题导致其无法在现今的建筑行业中大范围推广。该文基于傅里叶定律设计聚碳酸酯交叉叠层真空玻璃(CLVG),对其进行传热和强度模拟,结果表明,在小于30 cm×30 cm的尺寸下,交差叠层结构作为一种柔性薄膜结构拥有比VG更低的传热系数。由于CLVG具有小尺寸下传热系数低、成本低廉、轻薄具有柔性、改造方便等优点,在未来建筑玻璃的改造中拥有广阔前景。
Abstract
Vacuum insulated glass is a key component of green energy-saving buildings. At present, traditional vacuum glass (VG) has many problems, such as edge heat leakage, high cost of indium alloy edge bonding, poor environmental adaptability of rigid structure and so on, which makes it unable to be widely promoted in today's construction industry. Based on Fourier's law, polycarbonate cross laminated vacuum glass (CLVG) is designed in this paper, and its heat transfer and strength are simulated. The results show that at the size of less than 30 cm×30 cm, the cross laminated structure, as a flexible film structure, has a lower heat transfer coefficient than that of VG. Because CLVG has the advantages of low heat transfer coefficient in small size, low cost, light and thin, flexible and convenient transformation, which has broad prospects in the transformation of architectural glass in the future.
关键词
真空玻璃 /
交叉叠层 /
传热分析 /
节能 /
模拟仿真
Key words
vacuum glass /
cross-lamination /
heat transfer analysis /
energy saving /
simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 奚小波, 缪宏, 王洪亮, 等. 封接温度对双银Low-E真空平板玻璃膜层光学性能的影响[J]. 太阳能学报, 2016, 37(2): 373-378.
XI X B, MIAO H, WANG H L, et al.Effect of sealing temperature on optical property of double-silver Low-E vacuum plate glass films[J]. Acta energiae solaris sinica, 2016, 37(2): 373-378.
[2] 唐健正. 真空玻璃[M]. 武汉: 武汉理工大学出版社, 2018.
TANG J Z.Vacuum glass[M]. Wuhan: Wuhan University of Technology Press, 2018.
[3] 赵洪凯, 张超, 窦睿智. 真空玻璃的支撑与封接技术研究进展[J]. 真空科学与技术学报, 2021, 41(5): 403-407.
ZHAO H K, ZHANG C, DOU R Z.Recent progress of support and sealing technology of vacuum glass[J]. Chinese journal of vacuum science and technology, 2021, 41(5): 403-407.
[4] 杨毅博, 徐冬霞, 岳高伟, 等. 真空玻璃封接接头残余应力的影响因素分析[J]. 真空科学与技术学报, 2021, 41(3): 273-279.
YANG Y B, XU D X, YUE G W, et al.Residual stress at soldered glass joint: a simulation and experimental study[J]. Chinese journal of vacuum science and technology, 2021, 41(3): 273-279.
[5] 张亮, 王磊, 王元麒. 基于主元分析与RBFNN的真空玻璃传热过程预测[J]. 真空, 2017, 54(3): 66-70.
ZHANG L, WANG L, WANG Y Q.RBF neural networks modeling of heat conduction process of vacuum glazing based on principal component analysis[J]. Vacuum, 2017, 54(3): 66-70.
[6] 郑宏飞, 吴裕远, 郑德修. 窄缝高真空平面玻璃作为太阳能集热器盖板的实验研究[J]. 太阳能学报, 2001, 22(3): 270-273.
ZHENG H F, WU Y Y, ZHENG D X.Experimental study on the performance of the solar collector with vacuum glazing[J]. Acta energiae solaris sinica, 2001, 22(3): 270-273.
[7] FANG Y P, HYDE T J, HEWITT N.Predicted thermal performance of triple vacuum glazing[J]. Solar energy, 2010, 84(12): 2132-2139.
[8] HAN Z M, BAO Y W, WU W D, et al.Evaluation of thermal performance for vacuum glazing by using three-dimensional finite element model[J]. Key engineering materials, 2011, 492: 328-332.
[9] KATSURA T, MEMON S, RADWAN A, et al.Thermal performance analysis of a new structured-core translucent vacuum insulation panel in comparison to vacuum glazing: experimental and theoretically validated analyses[J]. Solar energy, 2020, 199: 326-346.
[10] MANZ H, BRUNNER S, WULLSCHLEGER L.Triple vacuum glazing: heat transfer and basic mechanical design constraints[J]. Solar energy, 2006, 80(12): 1632-1642.
[11] JARIMI H, LV Q H, RAMADAN O, et al.Design, mathematical modelling and experimental investigation of vacuum insulated semi-transparent thin-film photovoltaic (PV) glazing[J]. Journal of building engineering, 2020, 31: 101430.
[12] MEMON S, FARUKH F, EAMES P C, et al.A new low-temperature hermetic composite edge seal for the fabrication of triple vacuum glazing[J]. Vacuum, 2015, 120: 73-82.
[13] MEMON S, EAMES P C.Design and development of lead-free glass-metallic vacuum materials for the construction and thermal performance of smart fusion edge-sealed vacuum glazing[J]. Energy and buildings, 2020, 227: 110430.
[14] ZHU W Y, ZHANG S H, SHIN S, et al.Effects of pillar design on the thermal performance of vacuum-insulated glazing[J]. Construction and building materials, 2022, 316: 125724.
[15] FANG Y P, EAMES P C.The effect of glass coating emittance and frame rebate on heat transfer through vacuum and electrochromic vacuum glazed windows[J]. Solar energy materials and solar cells, 2006, 90(16): 2683-2695.
[16] CUCE E, RIFFAT S B.Vacuum tube window technology for highly insulating building fabric: an experimental and numerical investigation[J]. Vacuum, 2015, 111: 83-91.
[17] FANG Y P, HYDE T J, ARYA F, et al.Indium alloy-sealed vacuum glazing development and context[J]. Renewable and sustainable energy reviews, 2014, 37: 480-501.
[18] BERARDI U.The development of a monolithic aerogel glazed window for an energy retrofitting project[J]. Applied energy, 2015, 154: 603-615.
[19] 董镛. 真空玻璃[J]. 真空, 2009, 46(5): 1-9.
DONG Y.On the vacuum glazing[J]. Vacuum, 2009, 46(5): 1-9.
[20] 张瑞宏. 真空平板玻璃传热性能及支撑应力研究[D]. 北京: 中国农业大学, 2005.
ZHANG R H.Research on vacuum plate glass’s performance of heat transfer and its stress caused by supporting[D]. Beijing: China Agricultural University, 2005.
[21] FANG Y P, HYDE T, HEWITT N, et al.Comparison of vacuum glazing thermal performance predicted using two- and three-dimensional models and their experimental validation[J]. Solar energy materials and solar cells, 2009, 93(9): 1492-1498.
[22] ZHU Q D, WU W D, YANG Y Y, et al.Finite element analysis of heat transfer performance of vacuum glazing with low-emittance coatings by using ANSYS[J]. Energy and buildings, 2020, 206: 109584.