计及多重不确定性与综合贡献率的多微网合作运行策略

姜恩宇, 陈周, 史雷敏, 惠杰, 林顺富, 米阳

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 80-89.

PDF(1822 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1822 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 80-89. DOI: 10.19912/j.0254-0096.tynxb.2022-1070

计及多重不确定性与综合贡献率的多微网合作运行策略

  • 姜恩宇1, 陈周1, 史雷敏2, 惠杰2, 林顺富1, 米阳1
作者信息 +

COOPERATIVE OPERATION STRATEGY OF MULTI-MICROGRIDS BASED ON MULTIPLE UNCERTAINTIES AND COMPREHEN SIVE CONTRIBUTION RATE

  • Jiang Enyu1, Chen Zhou1, Shi Leimin2, Hui Jie2, Lin Shunfu1, Mi Yang1
Author information +
文章历史 +

摘要

针对多微网系统如何实现各微网利益公平分配的问题,提出一种考虑多重不确定性和综合贡献率的多微电网合作运行策略。首先,采用鲁棒优化和信息间隙决策理论分别处理电价和风光不确定性,以降低系统的运营风险;并引入消纳责任权重促进可再生能源的消纳和系统的绿色、经济运行;然后,以基于非线性能量共享映射法的能量交互贡献率和二氧化碳排放减少率来量化合作贡献,实现利润分配的公平性以及促进各微网低碳减排的积极性;最后,基于Matlab平台对多微电网进行仿真模拟和算例分析,验证所提策略的合理性和有效性。

Abstract

How to achieve fair distribution of benefits among microgrids in a multi-microgrid system is an urgent issue to consider. This paper proposes a cooperative operation strategy of multi-microgrid considering multiple uncertainties and comprehensive contribution rate. Firstly, robust optimization and information gap decision theory are used to deal with electricity price and wind-solar uncertainty respectively to reduce the operational risk of the system. The weight of consumption responsibility is introduced to promote the consumption of renewable energy and the green and economic operation of the system; Secondly, the energy interaction contribution rate and carbon dioxide emission reduction rate based on the nonlinear energy sharing mapping method are used to quantify the cooperative contribution, so as to realize the fairness of profit distribution and promote the enthusiasm of low-carbon emission reduction of each microgrid. Finally, based on the Matlab platform, the simulation and case analysis of multi-microgrid are carried out, which verifies the rationality and effectiveness of the proposed strategy.

关键词

多微网 / 可再生能源 / 鲁棒优化 / 多重不确定性 / 综合贡献率

Key words

multi-microgrid / renewable energy / robust optimization / multiple uncertainties / comprehensive contribution rate

引用本文

导出引用
姜恩宇, 陈周, 史雷敏, 惠杰, 林顺富, 米阳. 计及多重不确定性与综合贡献率的多微网合作运行策略[J]. 太阳能学报. 2023, 44(10): 80-89 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1070
Jiang Enyu, Chen Zhou, Shi Leimin, Hui Jie, Lin Shunfu, Mi Yang. COOPERATIVE OPERATION STRATEGY OF MULTI-MICROGRIDS BASED ON MULTIPLE UNCERTAINTIES AND COMPREHEN SIVE CONTRIBUTION RATE[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 80-89 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1070
中图分类号: TM732   

参考文献

[1] 梁倍华, 何晋伟, 金子开, 等. 基于谐波阻抗匹配的微电网互联线路谐振分析及抑制措施[J]. 电力系统自动化, 2021, 45(14): 123-131.
LIANG B H, HE J W, JIN Z K, et al.Analysis and suppression measures for resonance on interconnection line between mircogrids based on harmonic impedance matching[J]. Automation of electric power systems, 2021, 45(14): 123-131.
[2] 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J] . 中国电机工程学报, 2021, 41(12): 3987-4000.
LI Z, CHEN S Y, DONG W J, et al.Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4000.
[3] 袁爽, 何银国, 戴朝华, 等. 风电时间相关性多面体不确定性建模与鲁棒机组组合优化[J]. 太阳能学报, 2020, 41(9): 293-301.
YUAN S, HE Y G, DAI C H, et al.Polyhedral uncertainty modeling and robust optimization in unit commitment considering wind temporal correlation[J]. Acta energiae solaris sinica, 2020, 41(9): 293-301.
[4] 钟嘉庆, 王一鸣, 赵志锋, 等. 低碳电源规划不确定性多目标鲁棒优化研究[J]. 太阳能学报, 2020, 41(9): 114-120.
ZHONG J Q, WANG Y M, ZHAO Z F, et al.Research on multi-objective robust optimization about low caebon generation expansion planning considering uncertainty[J]. Acta energiae solaris sinica, 2020, 41(9): 114-120.
[5] 陈寒, 唐忠, 鲁家阳, 等. 基于CVaR量化不确定性的微电网优化调度研究[J]. 电力系统保护与控制, 2021, 49(5): 105-115.
CHEN H, TANG Z, LU J Y, et al.Research on optimal dispatch of a microgrid based on CVaR quantitative uncertainty[J]. Power system protection and control, 2021, 49(5): 105-115.
[6] 帅轩越, 王秀丽, 吴雄, 等. 计及条件风险价值下基于合作博弈的多微网协同优化调度[J]. 电网技术, 2022, 46(1): 130-138.
SHUAI X Y, WANG X L, WU X, et al.Cooperative optimal scheduling of multi-microgrids based on cooperative game considering conditional value at risk[J]. Power system technology, 2022, 46(1): 130-138.
[7] LIU Y X, GUO L, HOU R S, et al.A hybrid stochastic/robust-based multi-period investment planning model for island microgrid[J]. International journal of electrical power & energy systems, 2021, 130: 106998.
[8] 万庆祝, 刘伟娜. 考虑风荷不确定性的大用户直购电鲁棒区间优化调度[J]. 太阳能学报, 2022, 43(7): 347-355.
WAN Q Z, LIU W N.Direct power purchase by large consumers considering wind load uncertainty robust interval optimal scheduling[J]. Acta energiae solaris sinica, 2022, 43(7): 347-355.
[9] 汪超群, 韦化, 吴思缘. 基于信息间隙决策理论的多源联合优化机组组合[J]. 中国电机工程学报, 2018, 38(12): 3431-3440, 2.
WANG C Q, WEI H, WU S Y.Multipower combined unit commitment based on information gap decision theory[J]. Proceedings of the CSEE, 2018, 38(12): 3431-3440, 2.
[10] 徐青山, 李淋, 蔡霁霖, 等. 考虑电能交互的冷热电多微网系统日前优化经济调度[J]. 电力系统自动化,2018, 42(21): 36-44.
XU Q S, LI L, CAI J L, et al.Day-ahead optimized economic dispatch of CCHP multi-microgrid system considering power interaction among microgrids[J]. Automation of electric power systems, 2018, 42(21): 36-44.
[11] ZHANG W, XU Y L.Distributed optimal control for multiple microgrids in a distribution network[J]. IEEE transactions on smart grid, 2019, 10(4): 3765-3779.
[12] 王守相, 吴志佳, 袁霜晨, 等. 区域多微网系统的多目标优化调度方法[J]. 电力系统及其自动化学报, 2017, 29(5): 14-20.
WANG S X, WU Z J, YUAN S C, et al.Method of multi-objective optimal dispatching for regional multi-microgrid system[J]. Proceedings of the CSU-EPSA, 2017, 29(5): 14-20.
[13] 叶亮, 吕智林, 王蒙, 等. 基于最优潮流的含多微网的主动配电网双层优化调度[J]. 电力系统保护与控制, 2020, 48(18): 27-37.
YE L, LYU Z L, WANG M, et al.Bi-level programming optimal scheduling of ADN with a multi-microgrid based on optimal power flow[J]. Power system protection and contro, 2020, 48(18): 27-37.
[14] 崔明勇, 宣名阳,卢志刚, 等. 基于合作博弈的多综合能源服务商运行优化策略[J]. 中国电机工程学报, 2022, 42(10): 3548-3564.
CUI M Y,XUAN M Y,LU Z G,et al.Operation optimization strategy of multi integrated energy service companies based on cooperative game theory[J]. Proceedings of the CSEE, 2022, 42(10): 3548-3564.
[15] 芮涛, 李国丽, 王群京, 等. 配电侧多微电网日前电能交易纳什议价方法[J]. 电网技术, 2019, 43(7): 2576-2585.
RUI T, LI G L, WANG Q J, et al.Nash bargaining method for multi-microgrid energy trading in distribution network[J]. Power system technology, 2019, 43(7): 2576-2585.
[16] 程杉, 陈梓铭, 王瑞, 等. 基于混合博弈的多微电网双层协调优化调度[J]. 电力自动化设备, 2021, 41(8): 41-46.
CHENG S, CHEN Z M, WANG R, et al.Double-layer coordinated optimal dispatching of multi-microgrid based on mixed game[J]. Eleclric power automation equipment, 2021, 41(8): 41-46.
[17] 刘志坚, 刘瑞光, 梁宁, 等. 一种基于博弈论的多微网能源交易方法[J]. 电网技术, 2021, 45(2): 587-595.
LIU Z J, LIU R G, LIANG N, et al.Energy trading method of multi-microgrids based on game theory[J]. Power system technology, 2021, 45(2): 587-595.
[18] 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
LI H, LIU D, YAO D Y.Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
[19] 赵敏, 沈沉, 刘锋, 等. 基于博弈论的多微电网系统交易模式研究[J]. 中国电机工程学报, 2015, 35(4): 848-857.
ZHAO M, SHEN C, LIU F, et al.A game-theoretic approach to analyzing power trading possibilities in multi-microgrids[J]. Proceedings of the CSEE, 2015, 35(4): 848-857.
[20] KHAN A A, NAEEM M, IQBAL M, et al.A compendium of optimi zation objectives, constraints, tools and algorithms for energy management in microgrids[J]. Renewable and sustainable energy reviews, 2016, 58: 1664-1683.
[21] 李坚, 吴亮红, 张红强, 等. 基于排序交叉优化算法的冷热电联供微电网经济调度[J]. 电力系统保护与控制, 2021, 49(18): 137-145.
LI J, WU L H, ZHANG H Q, et al.Microgrid economic dispatch of combined cooling, heating and power based on a rank pair learning crisscross optimization algorithm[J]. Power system protection and control, 2021, 49(18): 137-145.
[22] 瞿凯平, 黄琳妮, 余涛, 等. 碳交易机制下多区域综合能源系统的分散调度[J]. 中国电机工程学报, 2018, 38(3): 697-707.
QU K P, HUANG L N, YU T, et al.Decentralized dispatch of multi-area integrated energy systems with carbon trading[J]. Proceedings of the CSEE, 2018, 38(3): 697-707.
[23] CHENG Y H, ZHANG N, WANG Y, et al.Modeling carbon emission flow in multiple energy systems[J]. IEEE transactions on smart grid, 2019, 10(4): 3562-3574.
[24] MANSOURSAATLOO A, PEZHMANI Y, MIRZAEI M A, et al.Robust decentralized optimization of multi-microgrids integrated with power-to-X technologies[J]. Applied energy, 2021, 304: 117635.
[25] 李鹏, 吴迪凡, 李雨薇, 等. 基于谈判博弈的多微网综合能源系统多目标联合优化配置[J]. 电网技术, 2020, 44(10): 3680-3690.
LI P, WU D F, LI Y W, et al.Multi-objective union optimal configuration strategy for multi-microgrid integrated energy system considering bargaining games[J]. Power system technology, 2020, 44(10): 3680-3690.
[26] KAWAMORI T.A noncooperative foundation of the asymmetric nash bargaining solution[J]. Journal of mathematical economics, 2014, 52: 12-15.
[27] CUI S, WANG Y W, LIU X K, et al.Economic storage sharing framework: asymmetric bargaining-based energy cooperation[J]. IEEE transactions on industrial informatics, 2021, 17(11): 7489-7500.

基金

国家自然科学基金(51977127); 上海市科学技术委员会资助项目(19020500800); 国网河南省电力公司科技项目(521750220003)

PDF(1822 KB)

Accesses

Citation

Detail

段落导航
相关文章

/