为提升系统波能捕获能力,分析浮子受力,以状态空间法近似拟合辐射力,建立直驱式波浪发电系统数学模型。基于最优控制理论,以系统捕获波能为目标函数,在S域求解Hamilton方程,计算奇异最优控制率,经拉氏逆变换后得到理想电磁力信号。结合直接推力控制,设计二阶滑模控制方案,保证电机推力与初级磁链的跟踪效果。仿真结果表明,所提最优功率方案下系统捕获功率高,滑模控制器跟踪误差小、动态性能好,可提高波能转化率,有效降低推力与初级磁链脉动,增强系统鲁棒性。
Abstract
In order to improve wave energy capture capability of the system and analyze the force on the float, approximately fitting the radiation force by the state-space method, the mathematical model of direct-drive wave power system was established. Taking the captured wave energy of the system as the objective function, and solving Hamilton's equation in the S domain based on the optimal control theory, the singular optimal control rate was calculated, and the ideal electromagnetic force signal was obtained by inverse Laplace transform. Aimed at ensuring the tracking effect of the thrust force and primary flux, combined with direct thrust force control, a second order sliding mode control scheme was designed to ensure the tracking effect of the thrust force and primary flux. The results show that the proposed optimal power scheme has high capture efficiency, the proposed controller has small tracking error and good dynamic performance. It can improve the wave energy conversion rate, effectively reduce the thrust force and primary flux impulse, and optimize the system output power.
关键词
波浪能 /
波浪能转换 /
最大功率点跟踪 /
最优控制 /
直接推力控制
Key words
wave power /
wave energy conversion /
maximum power point track /
optimal control /
direct thrust force control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 熊锋俊, 杨俊华, 沈辉, 等. 基于纵横交叉算法的波浪发电装置最大功率跟踪控制[J]. 电测与仪表, 2019, 56(8): 124-130, 143.
XIONG F J, YANG J H, SHEN H, et al.The maximum power point tracking control based on crisscross optimization algorithm for wave power generation[J]. Electrical measurement & instrumentation, 2019, 56(8): 124-130, 143.
[2] MAREI M I, MOKHTAR M, EL-SATTAR A A. MPPT strategy based on speed control for AWS-based wave energy conversion system[J]. Renewable energy, 2015, 83: 305-317.
[3] 肖晓龙, 肖龙飞, 杨立军. 串联直驱浮子式波浪能发电装置能量捕获研究[J]. 太阳能学报, 2018, 39(2): 398-405.
XIAO X L, XIAO L F, YANG L J.Energy harvesting study of series direct driven float wave energy converter[J]. Acta energiae solaris sinica, 2018, 39(2): 398-405.
[4] LI L, YUAN Z M, GAO Y, et al.Wave force prediction effect on the energy absorption of a wave energy converter with real-time control[J]. IEEE transactions on sustainable energy, 2019, 10(2): 615-624.
[5] 康庆, 肖曦, 聂赞相, 等. 直驱型海浪发电系统输出功率优化控制策略[J]. 电力系统自动化, 2013, 37(3): 24-29.
KANG Q, XIAO X, NIE Z X, et al.An optimal control strategy for output power of the directly driven wave power generation systems[J]. Automation of electric power system, 2013, 37(3): 24-29.
[6] 蔡浩然, 杨俊华, 林巧梅, 等. 傅氏分析反步法直驱型海浪发电系统功率优化控制[J]. 电测与仪表, 2018, 55(18): 57-63.
CAI H R, YANG J H, LIN Q M, et al.An optimal control strategy for output power of directly driven wave generation system based on Fourier analysis back-stepping method[J]. Electrical measurement & instrumentation, 2018, 55(18): 57-63.
[7] 杨俊华, 陈海峰, 卢思灵, 等. 基于DSSOGI锁频环与改进鲸鱼优化算法的波浪发电系统功率优化控制[J]. 太阳能学报, 2021, 42(6): 12-20.
YANG J H, CHEN H F, LU S L, et al.Power optimization control of DSSOGI frequency locking loop and improved whale optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(6): 12-20.
[8] HUANG X R, SUN K, XIAO X.A neural network-based power control method for direct-drive wave energy converters in irregular waves[J]. IEEE transactions on sustainable energy, 2020, 11(4): 2962-2971.
[9] 卢思灵, 杨俊华, 沈辉, 等. 直驱式波浪发电系统的经济模型预测控制[J]. 电测与仪表, 2021, 58(3): 131-138.
LU S L, YANG J H, SHEN H, et al.Economic model predictive control of direct-drive wave power generation systems[J]. Electrical measurement & instrumentation, 2021, 58(3): 131-138.
[10] ZHAN S Y, NA J, LI G.Nonlinear noncausal optimal control of wave energy converters via approximate dynamic programming[J]. IEEE transactions on industrial informatics, 2019, 15(11): 6070-6079.
[11] ZHANG Y, STANSBY P, LI G.Non-causal linear optimal control with adaptive sliding mode observer for multi-body wave energy converters[J]. IEEE transactions on sustainable energy, 2021, 12(1): 568-577.
[12] 王海星, 封海潮, 司纪凯. PMLSM直接推力控制系统研究[J]. 微电机, 2012, 45(5): 26-30.
WANG H X, FENG H C, SI J K.Study on direct force control for PMLSM[J]. Micromotors, 2012, 45(5): 26-30.
[13] 张宏伟, 王新环, 陈凯彬. 基于12扇区的PMLSM直接推力控制[J]. 控制工程, 2019, 26(4): 729-734.
ZHANG H W, WANG X H, CHEN K B.Twelve-section direct thrust force force control for permanent magnet linear synchronous motor[J]. Control engineering of China, 2019, 26(4): 729-734.
[14] ZHAO W X, YANG A C, JI J H, et al.Modified flux linkage observer for sensorless direct thrust force control of linear vernier permanent magnet motor[J]. IEEE transactions on power electronics, 2019, 34(8):7800-7811.
[15] ALI MASOOD CHEEMA M, FLETCHER J E, FARSHADNIA M, et al. Combined speed and direct thrust force control of linear permanent-magnet synchronous motors with sensorless speed estimation using a sliding-mode control with integral action[J]. IEEE transactions on industrial electronics, 2017, 64(5): 3489-3501.
[16] CHENG Z S, YANG J M, HU Z Q, et al.Frequency/time domain modeling of a direct drive point absorber wave energy converter[J]. Science China physics, mechanics and astronomy, 2014, 57(2): 311-320.
[17] LEVANT A.Principles of 2-sliding mode design[J]. Automatica, 2007, 43(4): 576-586.
[18] YU Z, FALNES J.State-space modelling of a vertical cylinder in heave[J]. Applied ocean research, 1995, 17(5): 265-275.
[19] 巩冰. 振荡浮子式波浪能发电系统关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
GONG B.Research on the key technologies of oscillating buoy wave power generation system[D]. Harbin: Harbin Engineering University, 2015.
基金
国家自然科学基金(62173148); 广东省自然科学基金(2022A1515010150; 2023A1515010184); 广东省基础与应用基础研究基金(2022A1515240026)