PREDICTION OF IMPACT RESISTANCE OF OFFSHORE WIND TURBINE BASED ON AO-ESN
Zhang Ping1, Yang Xiaolei2, Zhang Guofeng3, Chen Cheng3, Yin Junjie3, Li Lianbing1
Author information+
1. Key Lab of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province (Hebei University of Technology), Tianjin 300130, China; 2. Artificial Intelligence and Data Science of Hebei University of Technology, Tianjin 300130, China; 3. Hebei Construction Investment Offshore Wind Power Co., Ltd., Tangshan 063000, China
In response to the current two mainstream solution of offshore wind turbine with insufficient accuracy of ground resistance methods, in this paper, the improved Echo state network (AO-ESN) based on the Aquila optimizer is proposed to predict and analyze the grounding resistance of offshore wind turbines. The three networks of BP, ESN and AO-ESN are used to make predictions. The results show that the prediction accuracy of the AO-ESN prediction model is 18% and 14.46% higher than the BP and ESN models, and the error is as low as 0.54%. The model built in this paper can be accurately predict the grounding resistance of offshore wind turbines, and provide reference for transient analysis and lightning protection of offshore wind turbines
Zhang Ping, Yang Xiaolei, Zhang Guofeng, Chen Cheng, Yin Junjie, Li Lianbing.
PREDICTION OF IMPACT RESISTANCE OF OFFSHORE WIND TURBINE BASED ON AO-ESN[J]. Acta Energiae Solaris Sinica. 2023, 44(5): 480-486 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1107
中图分类号:
TU856
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邓长征, 彭永康, 邱立, 等. 风电机组典型接地装置的降阻措施冲击试验研究[J]. 高压电器, 2017, 53(10): 158-163. DENG C Z, PENG Y K, QIU L, et al.Impulse test study on decreasing resistance measures of typical grounding devices of wind turbine generators[J]. High voltage apparatus, 2017, 53(10): 158-163. [2] 任冲, 柯贤波, 樊国伟, 等. 大规模风电直流送出系统过电压抑制措施及控制方案优化研究[J]. 高压电器, 2020, 56(5): 163-174. REN C, KE X B, FAN G W, et al.Transient voltage stabilization and control optimization for large-scale wind power UHV DC transmission system[J]. High voltage apparatus, 2020, 56(5): 163-174. [3] 潘俊文, 罗日成, 唐祥盛, 等. 风电场架空集电系统雷电暂态过电压分析[J]. 高压电器, 2015, 51(10): 34-39, 46. PAN J W, LUO R C, TANG X S, et al.Analysis on lightning transient overvoltage of overhead line power collection system in wind power plant[J]. High voltage apparatus, 2015, 51(10): 34-39, 46. [4] 张萍, 吴显腾, 赵新贺, 等. 基于ATP-EMTP的海上风机雷电暂态分析[J]. 高电压技术, 2020, 46(12): 4266-4273. ZHANG P, WU X T, ZHAO X H, et al.Lightning transient analysis of offshore wind turbines based on ATP-EMTP[J]. High voltage engineering, 2020, 46(12): 4266-4273. [5] 李健. 海上风机基础结构设计标准研究[J]. 中国资源综合利用, 2019, 37(12): 185-187. LI J.Research on design standards of offshore fan infrastructure[J]. China resources comprehensive utilization, 2019, 37(12): 185-187. [6] 柴艳莉. 基于三层土壤模型的水电站接地系统优化研究[D]. 重庆: 重庆大学, 2012. CHAI Y L.The grounding system optimization of hydropower station based on the three-layer soil model[D]. Chongqing: Chongqing University, 2012. [7] BLOOM I, JANSEN A N, Abraham D P, et al.Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of power sources, 2005, 139(1): 295-303. [8] 吴昊. 雷击海上风机高频电磁暂态效应研究[D]. 济南: 山东大学, 2016. WU H.Study on high-frequency transient electromagnetic wind turbine offshore in lightning strikes[D]. Ji’nan: Shandong University, 2016. [9] 李增, 吴广宁, 付龙海, 等. 双层结构土壤模型地网接地电阻的简化计算[J]. 高电压技术, 2008, 34(1): 45-48. LI Z, WU G N, FU L H, et al.Simplified calculation of grounding resistance of substation grounding system in the two-layer soil[J]. High voltage engineering, 2008, 34(1): 45-48. [10] GUODA O E, EI-SAIED T, SALEMW A, et al.Evaluations of the apparent soil resistivity and the reflection factor effects on the grounding grid performance in three-layer soils[J]. IET science, measurement & technology, 2019, 13(4): 572-581 [11] 王刚, 谭盛武, 林生军, 等. 基于模糊系统的接触电阻建模方法[J]. 高电压技术, 2017, 43(3): 940-945. WANG G, TAN S W, LIN S J, et al.Modeling method of contact resistance based on fuzzy system[J]. High voltage engineering, 2017, 43(3): 940-945. [12] 孙海峰, 沈颖, 王亚楠. 基于遗传算法优化BP神经网络的接触电阻预测[J]. 电测与仪表, 2019, 56(5): 77-83. SUN H F, SHEN Y, WANG Y N.Prediction of contact resistance based on optimized BP neural network of genetic algorithm[J]. Electrical measurement & instrumentation, 2019, 56(5): 77-83. [13] 章学树. 基于进化算法和神经网络的架空线路防雷优化设计研究[D]. 温州: 温州大学, 2019. ZHANG X S.Research on optimal design methods of lighting protection for overhead lines based on evolutionary algorithms and netural networks[D]. Wenzhou: Wenzhou University, 2019. [14] JACOMET A, KHOSRAVIFARDSHIRAZI A, SAHAFNEJADMOHAMMADI I, et al.Analysing the influential parameters on the monopile foundation of an offshore wind turbine[J]. Computation, 2021, 9(6): 71. [15] WANG J H, ZHOU H, QIU K, et al.A semi-analytical approach to simulate cross-flow effect on the flow behavior of partially penetrating well in two-layer confined aquifer by Green function method[J]. Journal of hydrology, 2021, 597: 126141. [16] 王国政, 张黎, 吴昊, 等. 海上风机一体化电磁暂态模型与雷电暂态过电压研究[J]. 电力自动化设备, 2017, 37(11): 32-38. WANG G Z, ZHANG L, WU H, et al.Electromagnetic transient integration model and transient overvoltage study of offshore wind turbine[J]. Electric power automation equipment, 2017, 37(11): 32-38. [17] REN L, DONG J B, WANG X K, et al.A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE transactions on industrial informatics, 2021, 17(5): 3478-3487. [18] 刘超. 基于ESN的强化学习算法研究[D]. 海口: 海南大学, 2021. LIU C.Reinforcement learning algorithm study based on ESN[D]. Haikou: Hainan University, 2021. [19] 杨琼波, 崔东文. WPD-RSO-ESN和SSA-RSO-ESN模型在径流时间序列预测中应用比较[J]. 中国农村水利水电, 2022(2): 61-67, 75. YANG Q B, CUI D W.Application comparison of WPD-RSO-ESN and SSA-RSO-ESN models in runoff time series forecasting[J]. China rural water and hydropower, 2022(2): 61-67, 75. [20] 韩鹏, 郭天, 汪晋宽, 等. 基于mRMR-ESN的单变量光伏功率预测[J]. 东北大学学报(自然科学版), 2021, 42(2): 174-179. HAN P, GUO T, WANG J K, et al.PV power forecasting with univariate input based on mRMR-ESN[J]. Journal of northeastern university(natural Science), 2021, 42(2): 174-179. [21] YUAN X W, HAO C H, GU J R, et al.Research on the commonness and dissimilarity of group machine tools based on BP and SAE algorithms[J]. Computers & industrial engineering, 2021, 158: 107451. [22] 琚垚, 祁林, 刘帅. 基于改进乌鸦算法和ESN神经网络的短期风电功率预测[J]. 电力系统保护与控制, 2019, 47(4): 58-64. JU Y, QI L, LIU S.Short-term wind power forecasting based on improved crow search algorithm and ESN neural network[J]. Power system protection and control, 2019, 47(4): 58-64. [23] 李国龙, 陈孝勇, 李喆裕, 等. 采用天鹰优化卷积神经网络的精密数控机床主轴热误差建模[J]. 西安交通大学学报, 2022, 56(8): 51-61. LI G L, CHEN X Y, LI Z Y, et al.Thermal error modeling of spindle for precision CNC machine tool based on AO-CNN[J]. Journal of Xi’an Jiaotong University, 2022, 56(8): 51-61. [24] LAITH A, DALIA Y, MOHAMED A, et al.Aquila optimizer: a novel meta-heuristic optimization algorithm. Computers & industrial engineering, 2021, 157, 107250. [25] 易振, 柴琳, 刘惠康, 等. 基于AO-ENN的LF炉C、Mn合金收得率预报模型[J]. 中国冶金, 2022, 32(5): 40-48, 57. YI Z, CHAI L, LIU H K, et al.Prediction model of C and Mn alloy yield in LF based on AO-ENN[J]. China metallurgy, 2022, 32(5): 40-48, 57.