青海省太阳能-风能发电潜力评估及时空格局

曹炯玮, 魏加华, 李想, 黄跃飞

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 255-265.

PDF(3591 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3591 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 255-265. DOI: 10.19912/j.0254-0096.tynxb.2022-1150

青海省太阳能-风能发电潜力评估及时空格局

  • 曹炯玮1, 魏加华1,2, 李想1,3, 黄跃飞1,2
作者信息 +

POTENTIAL ASSESSSMENT AND SPATIO-TEMPORAL PATTERN OF SOLAR-WIND POWER IN QINGHAI PROVINCE

  • Cao Jiongwei1, Wei Jiahua1,2, Li Xiang1,3, Huang Yuefei1,2
Author information +
文章历史 +

摘要

为定量评估青海省太阳能、风能资源开发潜力,该文基于地形条件、土地利用、生态保护区等地理空间分析,在10 m×10 m空间分辨率上提取光风电站可开发利用区域,考虑了地形条件对装机折减影响及真实电场设计参数,采用1980—2020年MERRA-2再分析数据,评估了青海省光风理论和技术发电潜力,分析了时空格局,识别了开发利用现状。研究表明:1)1980—2020年青海省太阳能多年平均理论发电潜力1881.1 kWh/m2,技术发电潜力301.7 kWh/m2;空间上,呈西高东低的分布格局,且东部变化更为显著;时间上,全省呈波动减少特征,整体下降速率为-337.9亿kWh/a,各地区增减不一,其中果洛和玉树缓慢上升,其他地区呈下降趋势。2)1980—2020年青海省风能多年平均理论发电潜力121.1 kWh/m2,技术发电潜力21.9 kWh/m2;空间上,呈西北高东南低的分布格局,且西南部变化更为显著;时间上,全省呈先增加后减少的趋势特征,整体下降速率为-27.0亿kWh/a,各地区增减不一,其中海西减少最快,玉树有小幅增加。3)青海省太阳能和风能2020年发电量分别为167亿kWh和81亿kWh,分别占技术发电潜力的1.1%和9.2%,仍具有较大挖潜空间。

Abstract

In order to quantitatively assess the power potential of solar and wind resources in Qinghai Province, this paper extracts the exploitable area of solar and wind power stations based on geospatial analysis of topographic condition, land use and ecological protection area at a spatial resolution of 10 m×10 m; considers the impact of topographic condition on the reduction of installed capacity and the real-world parameters for designing a power station; and uses the MERRA-2 reanalysis data from 1980 to 2020 to assess the theoretical and technical potential of solar and wind power, analyze the spatio-temporal pattern, and identify the development and utilization. The results indicate that: 1)the multi-year average theoretical potential of solar power in Qinghai Province is 1881.1 kWh/m2 and the technical potential is 301.7 kWh/m2. In term of spatial distribution, the technical potential is high in the west and low in the east, with more significant changes in the east. In term of temporal evolution, the overall reduction rate is -33.79 billion kWh/a. The trend of evolution is different in different regions, with Guoluo and Yushu showing slowly increasing trends and other regions showing decreasing trends. 2)The multi-year average theoretical potential of wind power in Qinghai Province is 121.1 kWh/m2 and the technical potential is 21.9 kWh/m2. In term of spatial distribution, the technical potential is high in the northwest and low in the southeast, with more significant changes in the southwest. In term of temporal evolution, the overall reduction rate is -2.70 billion kWh/a. The trend of evolution is different in different regions, with the fastest downward trend in Haixi and the slow upward trend in Yushu. 3) The solar and wind power generation in Qinghai province is 16.7 billion and 8.1 billion kWh in 2020, accounting for 1.1% and 9.2% of the technical potential respectively, and there is still a large potential space.

关键词

太阳能 / 风能 / 发电潜力 / 时空分布 / 开发利用

Key words

solar power / wind power / power generation potential / spatio-temporal distribution / exploitation and utilization

引用本文

导出引用
曹炯玮, 魏加华, 李想, 黄跃飞. 青海省太阳能-风能发电潜力评估及时空格局[J]. 太阳能学报. 2023, 44(10): 255-265 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1150
Cao Jiongwei, Wei Jiahua, Li Xiang, Huang Yuefei. POTENTIAL ASSESSSMENT AND SPATIO-TEMPORAL PATTERN OF SOLAR-WIND POWER IN QINGHAI PROVINCE[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 255-265 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1150
中图分类号: X382   

参考文献

[1] MALLAPATY S.How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830): 482-483.
[2] FILLOL E, ALBARELO T, PRIMEROSE A, et al.Spatiotemporal indicators of solar energy potential in the Guiana Shield using GOES images[J]. Renewable energy, 2017, 111: 11-25.
[3] YUSHCHENKO A, DE BONO A, CHATENOUX B, et al.GIS-based assessment of photovoltaic(PV) and concentrated solar power (CSP) generation potential in West Africa[J]. Renewable and sustainable energy reviews, 2018, 81: 2088-2103.
[4] JAIN A, DAS P, YAMUJALA S, et al.Resource potential and variability assessment of solar and wind energy in India[J]. Energy, 2020, 211: 118993.
[5] ANWARZAI M A, NAGASAKA K.Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis[J]. Renewable and sustainable energy reviews, 2017, 71: 150-160.
[6] HE G, KAMMEN D M.Where, when and how much solar is available? A provincial-scale solar resource assessment for China[J]. Renewable energy, 2016, 85: 74-82.
[7] ZHANG Y H, REN J, PU Y R, et al.Solar energy potential assessment: a framework to integrate geographic, technological, and economic indices for a potential analysis[J]. Renewable energy, 2020, 149: 577-586.
[8] 李柯, 何凡能. 中国陆地太阳能资源开发潜力区域分析[J]. 地理科学进展, 2010, 29(9): 1049-1054.
LI K, HE F N.Analysis on China’s mainland’s solar energy distribution and potential to utilize solar energy as an alternative energy source[J]. Progress in geography, 2010, 29(9): 1049-1054.
[9] 郭鹏, 申彦波, 陈峰, 等. 光伏发电潜力分析: 以山西省为例[J]. 气象科技进展, 2019, 9(2): 78-83.
GUO P, SHEN Y B, CHEN F, et al.The analysis of PV electricity generation potential: a case study in Shanxi[J]. Advances in meteorological science and technology, 2019, 9(2): 78-83.
[10] 周扬, 吴文祥, 胡莹, 等. 江苏省可用太阳能资源潜力评估[J]. 可再生能源, 2010, 28(6): 10-13.
ZHOU Y, WU W X, HU Y, et al.The assessment of available solar energy resources potential in Jiangsu Province[J]. Renewable energy resources, 2010, 28(6): 10-13.
[11] BILGILI M, HASSANZADEH R, SAHIN B, et al.Investigation of wind power density at different heights in the Gelibolu peninsula of Turkey[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2016, 38(4): 512-518.
[12] SAHIN B, BILGILI M.Wind characteristics and energy potential in belen-hatay, Turkey[J]. International journal of green energy, 2009, 6(2): 157-172.
[13] BABAN S M J, PARRY T. Developing and applying a GIS-assisted approach to locating wind farms in the UK[J]. Renewable energy, 2001, 24(1): 59-71.
[14] 薛桁, 朱瑞兆. 我国风能开发利用及布局潜力评估[J]. 太阳能学报, 1990, 11(1): 1-11.
XUE H, ZHU R Z.Evaluations on the potential of the utilization and distribution of wind energy resources in China[J]. Acta energiae solaris sinica, 1990, 11(1): 1-11.
[15] 马进山, 肖辉, 孔令军. 济宁东部山区风能资源开发潜力研究[J]. 气象, 2010, 36(1): 72-78.
MA J S, XIAO H, KONG L J.Evaluation of wind resources in mountainous areas of eastern Jining, Shandong[J]. Meteorological monthly, 2010, 36(1): 72-78.
[16] H. Dobesch, 陈沈斌, H. V. Tran, 等. 吉林省的风能潜力(英文)[J]. 自然资源学报, 2005, 20(5): 684-689, 798.
DOBESC H, CHEN S B, TRAN H V, et al.The wind energy potential in Jilin Province, China[J]. Journal of natural resources, 2005, 20(5): 684-689, 798.
[17] 毛爱涵, 李发祥, 杨思源, 等. 青海省清洁能源发电潜力及价值分析[J]. 资源科学, 2021, 43(1): 104-121.
MAO A H, LI F X, YANG S Y, et al.Clean energy power generation potential and value in Qinghai Province[J]. Resources science, 2021, 43(1): 104-121.
[18] 保广裕, 张静, 周丹, 等. 青海省太阳辐射强度时空变化特征分析[J]. 冰川冻土, 2017, 39(3): 563-571.
BAO G Y, ZHANG J, ZHOU D, et al.Analysis of the spatiotemporal characteristics of solar radiation intensity in Qinghai Province[J]. Journal of glaciology and geocryology, 2017, 39(3): 563-571.
[19] 伊俊兰, 祁栋林, 许雪莲, 等. 1961—2019年青海省气候生产潜力时空演变特征[J]. 江苏农业科学, 2021, 49(20): 234-242.
YI J L, QI D L, XU X L, et al.Temporal and spatial evolution characteristics of climate productivity potential in Qinghai Province from 1961 to 2019[J]. Jiangsu agricultural sciences, 2021, 49(20): 234-242.
[20] 郭素荣. 1960—2010年青海省气候变化的时空特征分析[D]. 兰州: 西北师范大学, 2012.
GUO S R.The analysis of temporal and spatial variation of climate in Qinghai Province from 1960 to 2010[D]. Lanzhou: Northwest Normal University, 2012.
[21] HOOGWIJK M M.On the global and regional potential of renewable energy sources[D]. Utrecht: University Utrecht, 2004.
[22] GB 50797—2012, 光伏发电站设计规范[S].
GB 50797—2012, Code for design of photovoltaic power station[S].
[23] DJEBBAR R, BELANGER D, BOUTIN D, et al.Potential of concentrating solar power in Canada[J]. Energy procedia, 2014, 49: 2303-2312.
[24] FLURI T P.The potential of concentrating solar power in South Africa[J]. Energy policy, 2009, 37(12): 5075-5080.
[25] TYAGI V V, RAHIM N A A, RAHIM N A, et al. Progress in solar PV technology: research and achievement[J]. Renewable and sustainable energy reviews, 2013, 20: 443-461.
[26] BECKER C, SONTHEIMER T, STEFFENS S, et al.Polycrystalline silicon thin films by high-rate electronbeam evaporation for photovoltaic applications: influence of substrate texture and temperature[J]. Energy procedia, 2011, 10: 61-65.
[27] VRIELINK J A M, TIGGELAAR R M, GARDENIERS J G E, et al. Applicability of X-ray fluorescence spectroscopy as method to determine thickness and composition of stacks of metal thin films: a comparison with imaging and profilometry[J]. Thin solid films, 2012, 520(6): 1740-1744.
[28] PEUMANS P, YAKIMOV A, FORREST S R.Small molecular weight organic thin-film photodetectors and solar cells[J]. Journal of applied physics, 2003, 93(7): 3693-3723.
[29] ITOH M, TAKAHASHI H, FUJII T, et al.Evaluation of electric energy performance by democratic module PV system field test[J]. Solar energy materials and solar cells, 2001, 67(1/2/3/4): 435-440.
[30] NAZEERUDDIN M K, BARANOFF E, GRÄTZEL M. Dye-sensitized solar cells: a brief overview[J]. Solar energy, 2011, 85(6): 1172-1178.
[31] KUMAR P, DEEP A, SHARMA S C, et al.Bioconjugation of InGaP quantum dots for molecular sensing[J]. Analytical biochemistry, 2012, 421(1): 285-290.
[32] RAZYKOV T M, FEREKIDES C S, MOREL D, et al.Solar photovoltaic electricity: current status and future prospects[J]. Solar energy, 2011, 85(8): 1580-1608.
[33] GASTLI A, CHARABI Y.Siting of large PV farms in Al-Batinah region of Oman[C]//2010 IEEE International Energy Conference, Manama, Bahrain, 2011: 548-552.
[34] GB/T 18710—2002, 风电场风能资源评估方法[S].
GB/T 18710—2002, Methodology of wind energy resource assessment for wind farm[S].
[35] NB/T 10103—2018, 风电厂工程微观选址技术规范[S].
NB/T 10103—2018, Technical code for micro-siting of wind power projects[S].
[36] BILLINTON R, BAI G.Generating capacity adequacy associated with wind energy[J]. IEEE transactions on energy conversion, 2004, 19(3): 641-646.
[37] 马锁明. 现代水平轴三叶片风力发电机转速控制的优化[J]. 电力系统保护与控制, 2018, 46(5): 129-134.
MA S M.Optimization of generator speed controller used for the modern horizontal shaft three blades wind turbines[J]. Power system protection and control, 2018, 46(5): 129-134.
[38] KHATIBI A, KRAUTER S.Validation and performance of satellite meteorological dataset MERRA-2 for solar and wind applications[J]. Energies, 2021, 14(4): 882.

基金

国家自然科学基金(U2243232); 青海省重大科技专项(2021-SF-A6; 2021-SF-A7-1); 青海省基础研究计划项目(2022-ZJ-933Q)

PDF(3591 KB)

Accesses

Citation

Detail

段落导航
相关文章

/