为改善复杂工况下直驱式波浪发电系统功率捕获效果、降低控制器计算负担,基于矩匹配算法改进模型预测控制策略。通过建立系统水动力模型,选取波浪关键频率,利用Sylvester方程计算该频率下系统期望矩,得到匹配幅相特性的降阶模型。根据系统降阶模型,构造并求解可计及电机铜耗的改进二次型成本函数,计算理想电磁力,得到q轴期望电流跟踪值,提升波能捕获能力同时减少系统主要损耗。仿真结果表明:矩匹配降阶算法拟合程度高、动态行为好,所提控制策略波能转换效率提高,系统输出平均功率增加。
Abstract
To improve the power capture effect of direct-drive wave power systems under complex operating conditions and to reduce the computational burden on the controller, the model prediction control strategy is improved based on the moment matching algorithm. By building a hydrodynamic model of the system, selecting the key wave frequency and using Sylvester’s equation to calculate the expected moments of the system at this frequency, a reduced-order model with matching amplitude and phase characteristics is derived. Based on a reduced-order model of the system, an improved quadratic cost function that accounting for motor copper consumption is constructed and solved, calculate the ideal electromagnetic force, and obtain the desired current tracking value for the q-axis to improve wave energy capture while reducing major system losses. Simulation results show that the moment matching reduced-order algorithm fits well, the dynamic behaviour is good, the wave energy converter efficiency of the proposed control strategy is improved and the average system output power increases.
关键词
波浪能 /
波浪能转换 /
模型预测控制 /
永磁直线同步电机 /
模型降阶
Key words
wave power /
wave energy conversion /
model predictive control /
permanent magnet liner synchronous machine /
model reduction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张中华, 夏增艳, 黄勇, 等. 离岸摆式波浪能发电技术综述[J]. 太阳能学报, 2012, 33(增刊1): 152-155.
ZHANG Z H, XIA Z Y, HUANG Y, et al.Overview of offshore surging wave energy power generation technologies[J]. Acta energiae solaris sinica, 2012, 33(S1): 152-155.
[2] 刘华兵, 彭爱武, 赵凌志. 波浪发电系统功率控制方法综述[J]. 电工电能新技术, 2020, 39(5): 49-58.
LIU H B, PENG A W, ZHAO L Z.Summary of power control methods for wave power generation system[J]. Advanced technology of electrical engineering and energy, 2020, 39(5): 49-58.
[3] 程正顺. 浮子式波浪能转换装置机理的频域及时域研究[D]. 上海: 上海交通大学, 2013.
CHENG Z S.Frequency domain and time domain analysis on mechanism of a point absorber wave energy convertor[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[4] 洪岳, 潘剑飞, 刘云, 等. 直驱波浪能发电系统综述[J]. 中国电机工程学报, 2019, 39(7): 1886-1900.
HONG Y, PAN J F, LIU Y, et al.A review on linear generator based wave energy conversion systems[J]. Proceedings of the CSEE, 2019, 39(7): 1886-1900.
[5] ODABASIOGLU A, CELIK M, PILEGGI L T.PRIMA: passive reduced-order interconnect macromodeling algorithm[M]. Boston:The Best of ICCAD, 2003, 433-450.
[6] 杜鑫, 丁大伟. 基于平衡截断法的离散时间线性时滞系统的低频域模型降阶[J]. 自动化学报, 2015, 41(10): 1825-1830.
DU X, DING D W.Model order reduction of linear delay systems over low-frequency ranges via balanced truncation based approach[J]. Acta automatica sinica, 2015, 41(10): 1825-1830.
[7] 黄宝洲, 杨俊华, 沈辉, 等. 波浪发电系统无速度传感器功率优化控制[J]. 智慧电力, 2019, 47(1): 34-40.
HUANG B Z, YANG J H, SHEN H, et al.Power optimization control of speed sensorless for wave power generation system[J]. Smart power, 2019, 47(1): 34-40.
[8] 黄宝洲, 杨俊华, 沈辉, 等. 基于FFT的直驱式波浪发电系统功率优化控制[J]. 太阳能学报, 2021, 42(3): 206-213.
HUANG B Z, YANG J H, SHEN H, et al.Power optimization control of direct drive wave power system based on FFT[J]. Acta energiae solaris sinica, 2021, 42(3): 206-213.
[9] 蔡浩然, 杨俊华, 林巧梅, 等. 傅氏分析反步法直驱型海浪发电系统功率优化控制[J]. 电测与仪表, 2018, 55(18): 57-63.
CAI H R, YANG J H, LIN Q M, et al.An optimal control strategy for output power of directly driven wave generation system based on Fourier analysis back-stepping method[J]. Electrical measurement & instrumentation, 2018, 55(18): 57-63.
[10] 卢思灵, 杨俊华, 沈辉, 等. 直驱式波浪发电系统的经济模型预测控制[J]. 电测与仪表, 2021, 58(3): 131-138.
LU S L, YANG J H, SHEN H, et al.Economic model predictive control of direct-drive wave power generation systems[J]. Electrical measurement & instrumentation, 2021, 58(3): 131-138.
[11] HILLIS A J, WHITLAM C, BRASK A, et al.Active control for multi-degree-of-freedom wave energy converters with load limiting[J]. Renewable energy, 2020, 159: 1177-1187.
[12] 邹子君, 杨俊华, 杨金明, 等. 基于人工鱼群算法的波浪发电系统最优负载[J]. 电测与仪表, 2018, 55(17): 21-26.
ZOU Z J, YANG J H, YANG J M, et al.Optimal load of wave power generation system based on artificial fish swarm algorithm[J]. Electrical measurement & instrumentation, 2018, 55(17): 21-26.
[13] ASTOLFI A, SCARCIOTTI G, SIMARD J, et al.Model reduction by moment matching: beyond linearity-a review of the last 10 years[C]//2020 59th IEEE Conference on Decision and Control (CDC). Jeju, Korea (South), 2021: 1-16.
[14] 徐康丽, 杨志霞, 蒋耀林. 保结构及无源性的H2模型降阶方法[J]. 计算机仿真, 2015, 32(12): 226-230.
XU K L, YANG Z X, JIANG Y L.Structure-preserving and passivity-preserving H2 model order reduction method[J]. Computer simulation, 2015, 32(12): 226-230.
[15] FAEDO N, PEÑA-SANCHEZ Y, RINGWOOD J V. Finite-order hydrodynamic model determination for wave energy applications using moment-matching[J]. Ocean engineering, 2018, 163: 251-263.
[16] NATARAJAN V.Compensating PDE actuator and sensor dynamics using Sylvester equation[J]. Automatica, 2021, 123: 109362.
[17] XIAO Z H, SONG Q Y, JIANG Y L, et al.Model order reduction of linear and bilinear systems via low-rank Gramian approximation[J]. Applied mathematical modelling, 2022, 106: 100-113.
[18] FAEDO N, OLAYA S, RINGWOOD J V.Optimal control, MPC and MPC-like algorithms for wave energy systems: an overview[J]. IFAC journal of systems and control, 2017, 1: 37-56.
[19] ZHAN S Y, NA J, LI G, et al.Adaptive model predictive control of wave energy converters[J]. IEEE transactions on sustainable energy, 2020, 11(1): 229-238.
[20] DE LA VILLA JAÉN A, GARCÍA-SANTANA A, EL MONTOYA-ANDRADE D. Maximizing output power of linear generators for wave energy conversion[J]. International transactions on electrical energy systems, 2014, 24(6): 875-890.
基金
国家自然科学基金(62173148); 广东省自然科学基金(2023A1515010184)