基于改进蚁群动态规划的光储微网容量优化配置

李圣清, 邓娜, 颜石, 刘丽, 彭坤, 彭晓玮

太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 468-476.

PDF(1686 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1686 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (2) : 468-476. DOI: 10.19912/j.0254-0096.tynxb.2022-1205

基于改进蚁群动态规划的光储微网容量优化配置

  • 李圣清1, 邓娜1, 颜石1, 刘丽1, 彭坤2, 彭晓玮3
作者信息 +

OPTIMAL CONFIGURATION OPTIMIZATION OF PV ENERGY STORAGE MICROGRID USING IMPROVED ANT COLONY DYNAMIC PROGRAMMING

  • Li Shengqing1, Deng Na1, Yan Shi1, Liu Li1, Peng Kun2, Peng Xiaowei3
Author information +
文章历史 +

摘要

为降低并网光储微网的综合发电成本,并提高优化容量配置性能,该文研究基于改进蚁群动态规划算法的光储微网容量优化配置方法。针对传统启发式算法容易陷入局部最优以及早熟收敛的问题,首先将蚁群算法与动态规划算法结合,简化计算过程;进而,将迭代次数有关的衰减参数引入调节因子中,提高其全局搜索能力;最后,将Boltzmann选择机制引进蚁群搜索过程,并在蚁群信息素更新过程中采用偏转角度因子与拐点参数进行修正,从而大幅提高算法的优化性能。通过对海宁某小区实际数据进行仿真分析,验证了该算法的实用性和优越性。

Abstract

An ant colony dynamic programming algorithm is presented to determine the optimal combination of a PV-BS microgrid, in order to reduce the comprehensive power generation cost of grid-connected PV-BS microgrid and the performance of optimal sizing. As the traditional heuristic algorithm is high possibility of being trapped in local optimum, the proposed to integrate ant colony algorithm and dynamic programming algorithm together, which is applied to the allocation table construction of dynamic programming to simplify the calculation process. Then, the decay parameter related to the number of iterations is introduced into the adjustment factor to improve its global search ability. Thirdly, the Boltzmann selection mechanism is introduced into the ant colony search process, and the deflection angle factor and the inflection point parameter are used to correct the ant colony pheromone update process, thereby effectively improving the optimization performance of the algorithm. Finally, the practicability and superiority of the algorithm are verified by the simulation analysis of the actual data of a residential area in Haining.

关键词

微电网 / 储能 / 优化配置 / 改进蚁群算法 / 动态规划

Key words

microgrid / energy storage / optimal sizing / improved ant colony algorithm / dynamic programming

引用本文

导出引用
李圣清, 邓娜, 颜石, 刘丽, 彭坤, 彭晓玮. 基于改进蚁群动态规划的光储微网容量优化配置[J]. 太阳能学报. 2023, 44(2): 468-476 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1205
Li Shengqing, Deng Na, Yan Shi, Liu Li, Peng Kun, Peng Xiaowei. OPTIMAL CONFIGURATION OPTIMIZATION OF PV ENERGY STORAGE MICROGRID USING IMPROVED ANT COLONY DYNAMIC PROGRAMMING[J]. Acta Energiae Solaris Sinica. 2023, 44(2): 468-476 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1205
中图分类号: TM727.2   

参考文献

[1] 严干贵, 李洪波, 段双明, 等. 基于双铅碳电池储能系统的微电网优化运行控制策略[J]. 电力系统自动化, 2019, 43(13): 46-53.
YAN G G,LI H B,DUAN S M,et al.Optimal operation control strategy of microgrid based on double-lead carbon battery energy system[J]. Automation of electric power systems, 2019, 43(13): 46-53.
[2] 陆立民, 褚国伟, 张涛, 等. 基于改进多目标粒子群算法的微电网储能优化配置[J]. 电力系统保护与控制, 2020, 48(15): 116-124.
LU L M, ZHU G W, ZHANG T, et al.Optimal configuration of energy storage in a microgrid based on improved multi-objective particle swarm optimization[J]. Power system protection and control, 2020, 48(15): 116-124.
[3] 侯云鹤, 熊信艮, 吴耀武, 等. 基于广义蚁群算法的电力系统经济负荷分配[J]. 中国电机工程学报, 2003, 23(3): 59-64.
HOU Y H, XIONG X Y, WU Y W, et al.Economic dispatch of power systems based on generalized ant colony optimization method[J]. Proceedings of the CSEE, 2003,23(3): 59-64.
[4] 张丹丹, 童亦斌, 金新民, 等. 计及需求响应的微电网储能优化配置[J]. 电力电子技术, 2016, 50(11): 107-109, 117.
ZHANG D D, TONG Y B, JING X M, et al.Optimal allocation of nergy storage in micro-grid considering demand response[J]. Power electronics, 2016, 50(11): 107-109, 117.
[5] 孙湛冬, 焦娇, 李伟, 等. 基于改进蚁群算法的电力云数据中心任务调度策略研究[J]. 电力系统保护与控制, 2022, 50(2): 95-101.
SUN Z D, JIAO J, LI W, et al.A task scheduling strategy for a power cloud data center based on an improved ant colony algorithm[J]. Power system protection and control, 2022, 50(2): 95-101.
[6] 伍春林. 基于改进蚁群算法的微电网DG选址与定容[D]. 长沙: 中南大学, 2010.
WU C L.Siting and aizing of DG for microgrid based on improved ant colony algorithm[D]. Changsha: Central South University, 2010.
[7] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884.
LI J L, NIU M, ZHOU X C, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 874-884.
[8] LIU Z G,TAN Q Y,ZHOU Y B,et al.Syncretic application of IBAS-BP algorithm for monitoring equipment online in power system[J]. IEEE access, 2021, 9: 2169-3536.
[9] MOUSAVI Y, ALFI A.Enhanced fractional chaotic whale optimization algorithm for parameter identification of isolated wind-diesel power systems[J]. IEEE access, 2020, 8: 140862-140875.
[10] MISHRA S,BHENDE C N.Bacterial foraging technique-based optimized active power filter for load compensation[J]. IEEE transactions on power delivery, 2007, 22(1): 457-465.
[11] 季颖, 王建辉. 基于深度强化学习的微电网在线优化调度[J]. 控制与决策, 2022, 37(7): 1675-1684.
JI Y, WANG J H.Online optimal scheduling of a microgrid based on deep reinforcement learning[J]. Control and decision, 2022, 37(7): 1675-1684.
[12] 赵超, 王斌, 孙志新, 等. 基于改进灰狼算法的独立微电网容量优化配置[J]. 太阳能学报, 2022, 43(1): 256-262.
ZHAO C, WANG B, SUN Z X, et al.Optimal configuration optimization of islanded microgrid using improved grey wolf optimized algorithm[J]. Acta energiae solaris sinica, 2022, 43(1): 256-262.
[13] 张玉, 卢子广, 卢泉, 等. 基于Levy飞行改进鸟群算法的光伏直流微电网优化配置研究[J]. 太阳能学报, 2021, 42(5): 214-220.
ZHANG Y, LU Z G, LU Q, et al.Research on optimal configuration of photovoltaic DC microgrid based on Levy flight improved bird swarm algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 214-220.
[14] SUNDARESWARAN K,VIGNESHKUMAR V,VETHANAYAGAM S, et al.Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system[J]. IEEE transactions on industrial informatics, 2016, 12(1): 187-200.
[15] 罗斯宁, 王化龙, 李弘宇. 基于改进蚁群算法的云计算用户任务调度算法[J]. 电信科学, 2020, 36(2): 95-100.
LUO S, WANG H L, LI H G.Cloud computing user task scheduling algorithm based on improved ant colony algorithm[J]. Telecom science, 2020, 36(2): 95-100.

基金

国家自然科学基金(51977072)

PDF(1686 KB)

Accesses

Citation

Detail

段落导航
相关文章

/