基于多控制器硬件在环的风电场仿真分析及应用

苗风麟, 李少林, 秦世耀, 贺敬, 张进

太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 451-460.

PDF(2532 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2532 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (10) : 451-460. DOI: 10.19912/j.0254-0096.tynxb.2022-1222

基于多控制器硬件在环的风电场仿真分析及应用

  • 苗风麟, 李少林, 秦世耀, 贺敬, 张进
作者信息 +

SIMULATION ANALYSIS AND APPLICATION OF WIND FARM BASED ON MULTI-CONTROLLERS HARDWARE-IN-THE-LOOP SIMULATION TECHNOLOGIES

  • Miao Fenglin, Li Shaolin, Qin Shiyao, He Jing, Zhang Jin
Author information +
文章历史 +

摘要

为准确反映风电机组及风电场并网控制性能,加速风电场并网控制策略研发及验证,基于实时仿真系统提出风电场多控制器硬件在环的仿真方法,通过建立风电场详细模型,设计各部分模型之间及与实际控制器的数据交互机制,实现了包含风电场功率控制系统及10台风电机组主控的多控制器硬件在环实时仿真。进而采用实测数据,进行控制链路时延仿真分析并验证机组电磁暂态特性、风电场功率控制特性的仿真准确性。基于所建立的仿真平台,对风电场一次调频控制策略进行计及机组载荷变化的平台验证,并在实际风电场中得到应用。

Abstract

In order to accurately reflect the grid-connected control performance of wind turbines and wind farms, and accelerate the development and verification of control strategies, a multi-controllers hardware-in-the-loop (CHIL) simulation method for wind farms based on real-time simulation system is proposed. In this paper, a CHIL wind farm real-time simulation platform is developed, including a wind farm power control system and 10 wind turbine main control PLCs, by building a detailed model of the wind farm and designing the data interaction mechanism between each part of the model and the actual controller. Based on the simulation platform, time delay in control link is analyzed and the simulation accuracy of the electromagnetic transient characteristics and the power control characteristics are verified. Furthermore, the primary frequency control with the consideration of loads impact on wind turbine is studied, which has been applied to a real wind farm.

关键词

风电场 / 风电机组 / 硬件在环仿真 / 仿真平台 / 一次调频

Key words

wind farm / wind turbines / hardware-in-the-loop simulation / simulation platform / primary frequency control

引用本文

导出引用
苗风麟, 李少林, 秦世耀, 贺敬, 张进. 基于多控制器硬件在环的风电场仿真分析及应用[J]. 太阳能学报. 2023, 44(10): 451-460 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1222
Miao Fenglin, Li Shaolin, Qin Shiyao, He Jing, Zhang Jin. SIMULATION ANALYSIS AND APPLICATION OF WIND FARM BASED ON MULTI-CONTROLLERS HARDWARE-IN-THE-LOOP SIMULATION TECHNOLOGIES[J]. Acta Energiae Solaris Sinica. 2023, 44(10): 451-460 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1222
中图分类号: TM614   

参考文献

[1] KABSHA M M, RATHER Z H.A new control scheme for fast frequency support from HVDC connected offshore wind farm in low-Inertia system[J]. IEEE transactions on sustainable energy, 2020, 11(3): 1829-1837.
[2] GB/T 19963.1—2021, 风电场接入电力系统技术规定第1部分: 陆上风电[S].
GB/T 19963.1—2021,Technical specification for connecting wind farm to power system—part 1: on shore wind power[S].
[3] GB/T 40600—2021, 风电场功率控制系统调度功能技术要求[S].
GB/T 40600—2021, Technical requirements for dispatching function of wind farm power control system[S].
[4] 周佩朋, 李光范, 孙华东, 等. 基于频域阻抗分析的直驱风电场等值建模方法[J]. 中国电机工程学报, 2020,40(S1): 84-90.
ZHOU P P, LI G F, SUN H D, et al.Equivalent modeling method of PMSG wind farm based on frequency domain impedance analysis[J]. Proceedings of the CSEE, 2020, 40(S1): 84-90.
[5] 邵冰冰. 直驱风电场经柔直并网系统的振荡特性和抑制策略研究[D]. 北京: 华北电力大学, 2021.
SHAO B B.Research on the oscillation characteristics and suppression strategies of direct-drive wind farms with VSC-HVDC systems[D]. Beijing: North China Electric Power University, 2021.
[6] 吴志鹏, 曹铭凯, 李银红. 计及Crowbar状态改进识别的双馈风电场等值建模方法[J]. 中国电机工程学报, 2022, 42(2): 603-614.
WU Z P, CAO M K, LI Y H.An equivalent modeling method of DFIG-based wind farm considering improved identification of Crowbar status[J]. Proceedings of the CSEE, 2022, 42(2): 603-614.
[7] JIN Y Q, WU D M, JU P, et al.Modeling of wind speeds inside a wind farm with application to wind farm aggregate modeling considering LVRT characteristic[J]. IEEE transactions on energy conversion, 2020, 35(1): 508-519.
[8] 古庭赟, 杨骐嘉, 林呈辉, 等. 基于单机等值与选择模态分析的风电场等值建模方法[J]. 电力系统保护与控制, 2020, 48(1): 102-111.
GU T Y, YANG Q J, LIN C H, et al.A wind farm equivalent modeling method based on single-machine equivalent modeling and selection modal analysis[J]. Power system protection and control, 2020, 48(1): 102-111.
[9] XIONG L Y, LI P H, WU F, et al.Stability enhancement of power systems with high DFIG-wind turbine penetration via virtual inertia planning[J]. IEEE transactions on power systems, 2019, 34(2): 1352-1361.
[10] 刘其辉, 高瑜, 郭天飞, 等. 风电并网系统阻抗稳定性分析及次同步振荡因素研究[J]. 太阳能学报, 2022, 43(1): 89-100.
LIU Q H, GAO Y, GUO T F, et al.Research on impedance stability analyisis and subsynchronous oscillation factors of wind power grid-connected systemp[J]. Acta energiae solaris sinica, 2022, 43(1): 89-100.
[11] BOUBZIZI S, ABID H, EL HAJJAJI A, et al.Comparative study of three types of controllers for DFIG in wind energy conversion system[J]. Protection and control of modern power systems, 2018, 3(3): 214-225.
[12] 肖运启, 李浩志, 卢泽众, 等. 大型风电场多Agent系统建模仿真及降损控制[J]. 太阳能学报, 2022, 43(9): 314-320.
XIAO Y Q, LI H Z, LU Z Z, et al.Large-scale wind farm modeling and loss reduction control basde on multi-agent system[J]. Acta energiae solaris sinica, 2022, 43(9): 314-320.
[13] 马少康, 耿华, 马进, 等. 双馈型风电场详细模型建模方法[J]. 电工技术学报, 2017, 32(S1): 1-10.
MA S K, GENG H, MA J, et al.An approach to establish detailed model of DFIG based wind farm[J]. Transactions of China Electrotechnical Society, 2017, 32(S1):1-10.
[14] 何国庆, 王伟胜, 刘纯, 等. 风电基地经特高压直流送出系统换相失败故障(一):送端风电机组暂态无功电压建模[J]. 中国电机工程学报, 2022, 42(12): 4391-4405.
HE G Q, WANG W S, LIU C, et al.Commutation failure of UHVDC system for wind farm integration (Part I):transient reactive power and voltage modeling of wind powers in sending terminal grid[J]. Proceedings of the CSEE, 2022, 42(12): 4391-4405.
[15] 贾锋, 蔡旭, 李征, 等. 风电机组精细化建模及硬件在环实时联合仿真[J]. 中国电机工程学报, 2017, 37(4): 1239-1251.
JIA F, CAI X, LI Z, et al.Refined modeling of wind energy conversion systems and real-time co-simulation with hardware-in-loop[J]. Proceedings of the CSEE, 2017, 37(4): 1239-1251.
[16] 李少林, 王伟胜, 张兴, 等. 风力发电对系统频率影响及虚拟惯量综合控制[J]. 电力系统自动化, 2019, 43(15): 64-70.
LI S L, WANG W S, ZHANG X, et al.Impact of wind power on power system frequency and combined virtual inertia control[J]. Automation of electric power systems, 2019, 43(15): 64-70.
[17] MIAO F L, LI Q, HE J, et al.Power control performance evaluation of wind turbine based on a hardware-in-the-loop simulation platform[C]//8th Renewable Power Generation Conference (RPG 2019). Shanghai, China, 2020.
[18] 李鹏程, 欧家祥, 郝正航, 等. 双馈式风电场抑制电网低频振荡的实时数字仿真仪实验[J]. 电力系统及其自动化学报, 2017, 29(11): 26-31.
LI P C,OU J X, HAO Z H, et al.Experiments on damping the low frequency oscillation of power grid by DFIG-based wind farm with RTDS[J]. Proceedings of the CSU-EPSA, 2017, 29(11): 26-31.
[19] 张祥宇, 朱正振, 付媛. 风电并网系统的虚拟同步稳定分析与惯量优化控制[J]. 高电压技术, 2020, 46(8): 2922-2932.
ZHANG X Y, ZHU Z Z, FU Y.Virtual synchronous stability analysis and optimized inertia control for wind power grid-connected system[J]. High voltage engineering, 2020, 46(8): 2922-2932.
[20] 刁俊超. 基于FAST与RT--LAB的双馈风电场精细化建模及实时仿真[D]. 济南: 山东大学, 2020.
DIAO J C.Refined modeling and real-time simulation of wind farm based on FAST and RT-LAB[D]. Ji’nan: Shandong University, 2020.
[21] HUANG X, WANG K Y, FAN B, et al.Robust current control of grid-tied inverters for renewable energy integration under non-ideal grid conditions[J]. IEEE transactions on sustainable energy, 2020, 11(1): 477-488.
[22] 张梅, 李少林, 李丹, 等. 东北电网风电惯量及一次调频实测与分析[J]. 电网技术, 2022, 46(4): 1624-1631.
ZHANG M, LI S L, LI D, et al.Measurement and analysis of wind power inertia response and primary frequency regulation characteristics in northeast China power grid[J]. Power system technology, 2022, 46(4): 1624-1631.

基金

国家电网有限公司总部科技项目(5100-202155481A-0-5-ZN)

PDF(2532 KB)

Accesses

Citation

Detail

段落导航
相关文章

/