采用CFD方法对风力机翼型在不同直径颗粒下的动态失速特性进行建模与数值模拟。首先,针对二维NACA 0012翼型,采用SST k-ω湍流模型对连续相与离散相耦合进行建模数值;其次,验证SST k-ω湍流模型的准确性,并对离散相模型进行可行性分析;最后,分析颗粒直径对翼型动态失速气动性能和翼型周围流场的影响,同时给出不同直径颗粒的质量浓度分布规律。研究表明:当颗粒直径小于50 μm时,颗粒直径越大,升力系数变化越大,翼型前缘附近的涡量也越大,大量颗粒聚集在翼型的吸力面;当颗粒直径为50 μm时,翼型运动到振荡周期的任何攻角下,升力系数都在减小,翼型前缘处的流场发生改变,涡量减小,涡强减小,大量颗粒聚集在翼型压力面,分离点后移;当颗粒直径大于50 μm时,在大攻角下影响较大,小攻角下影响较小,且升力系数都在减小,翼型前缘附近的涡量随颗粒直径的增加而减小,大量颗粒聚集在翼型整个压力面上。
Abstract
The dynamic stall characteristics of wind turbine airfoil under different diameter particles are modeled and simulated by CFD method. First of all, the continuous-phase and discrete-phase coupling is stimulated by the SST k-ω turbulence model for 2D NACA 0012 airfoil. After that, the accuracy of the SST k-ω turbulence model is verified, and the probability of the discrete-phase model is analyzed. The final step is to analyze the influences of particle diameter on the dynamic stall aerodynamic performance, and to obtain the distribution of concentration for the mass of particles with different diameters. The study presents that increasing the diameter of particles leads to larger lift coefficient when diameter of particles is less than 50 μm, resulting in more vortex volume near the leading edge of the airfoil, and plenty of particles gathering in the suction surface of the airfoil. As for the diameters equaling to 50 μm, the lift coefficient will decrease for any angle of attack of the airfoil movement to the oscillation cycle. The vortex volume and vortex intensity reduce because of the change of flow field at the leading edge of the airfoil. Consequently, a massive amount of particles accumulate at the pressure surface of the airfoil and the separation point shifts back. When it comes to the diameters larger than 50 μm, the larger attack angle has larger effect and vice versa, while lift coefficient decreases under both larger and small attack angles. The vortex volume near the leading edge of the airfoil decreases with the increasing of particle diameter, and a large number of particles are gathered on the whole pressure surface of the airfoil.
关键词
风力机 /
翼型 /
动态失速 /
颗粒直径 /
气动性能
Key words
wind turbines /
airfoil /
dynamic stall /
particle diameter /
aerodynamic performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MCCROSKEY W, CARR L, MCALISTER K.Dynamic stall experiments on oscillating airfoils[J]. AIAA journal, 2012, 14(1): 57-63.
[2] 黄知龙, 刘沛清, 赵万里. 风力机翼型大迎角分离和动态失速的数值研究[J]. 电网与清洁能源, 2010, 26(5): 47-51.
HUANG Z L, LIU P Q, ZHAO W L.Simulation of separated flows at high angles of attack for wind turbine airfoil and its dynamic stall[J]. Power system and clean energy, 2010, 26(5): 47-51.
[3] FIORE G, SELIG M.Simulation of damage progression on wind turbine blades subject to particle erosion[C]//54th AIAA Aerospace Sciences Meeting San Diego, California, USA: 2016.
[4] HAN W, KIM J, KIM B.Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines[J]. Renewable energy, 2018, 115: 817-823.
[5] 李德顺, 梁恩培, 李银然, 等. 风力机叶片涂层风沙冲蚀磨损特性的风洞试验研究[J]. 太阳能学报, 2022, 43(6): 196-203.
LI D S, LIANG E P, LI Y R, et al.Wind tunnel experimental study on erosion and wear characteristics of wind turbine blade coating[J]. Acta energiae solaris sinica, 2022, 43(6): 196-203.
[6] 李德顺, 王亚娥, 郭兴铎, 等. 沙粒形状对风力机翼型磨损特性及临界颗粒Stokes数的影响[J]. 农业工程学报, 2019, 35(12): 224-231.
LI D S, WANG Y E, GUO X D, et al.Effects of particle shape on erosion characteristic and critical particle Stokes number of wind turbine airfoil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 224-231.
[7] LI D S, ZHAO Z X, LI Y R, et al.Effects of the particle Stokes number on wind turbine airfoil erosion[J]. Applied mathematics and mechanics, 2018, 39(5): 639-652.
[8] KHAKPOUR Y, BARDAKJI S, NAIR S.Aerodynamic performance of wind turbine Blades in dusty environments[C]//ASME 2007 International Mechanical Engineering Congress and Exposition Volume 8: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A and B. Seattle, Washington, USA, 2007: 483-491.
[9] EKATERINARIS J A, PLATZER M F.Computational prediction of airfoil dynamic stall[J]. Progress in aerospace sciences, 1998, 33(11/12): 759-846.
[10] SAMARA F, JOHNSON D A.Dynamic stall on pitching cambered airfoil with phase offset trailing edge flap[J]. AIAA journal, 2020, 58: 2844-2856.
[11] MASDARI M, MOUSAVI M, TAHANI M.Dynamic stall of an airfoil with different mounting angle of gurney flap[J]. Aircraft engineering and aerospace technology, 2020, 92(7): 1037-1048.
[12] ZHU C Y, QIU Y N, WANG T G.Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: a comparative study[J]. Energy, 2021, 222: 120004.
[13] 陈旭, 郝辉, 田杰, 等. 水平轴风力机翼型动态失速特性的数值研究[J]. 太阳能学报, 2003, 24(6): 735-740.
CHEN X, HAO H, TIAN J, et al.Investigation on airfoil dynamic stall ofhorizontal axis wind turbine[J]. Acta energiae solaris sinica, 2003, 24(6): 735-740.
[14] GUPTA S, LEISHMAN J G.Dynamic stall modelling of the S809 aerofoil and comparison with experiments[J]. Wind energy, 2006, 9(6): 521-547.
[15] OL M V, BERNAL L, KANG C K, et al.Shallow and deep dynamic stall for flapping low Reynolds number airfoils[M]. Animal Locomotion. Berlin, Heidelberg: Springer, 2010: 321-339.
[16] WANG Q, ZHAO Q J.Unsteady aerodynamic characteristics simulations of rotor airfoil under oscillating freestream velocity[J]. Apply science, 2020, 10(5): 1822.
[17] 张俊伟, 张伟, 夏鹏, 等. 变形振荡翼的动态失速特性研究[J]. 水动力学研究与进展(A辑), 2019, 34(3): 331-338.
ZHANG J W, ZHANG W, XIA P, et al.Investigation of dynamic stall properties of the deformed oscillating airfoil[J]. Chinese journal of hydrodynamics, 2019, 34(3): 331-338.
[18] WANG Y, ZHENG X J, HU R F, et al.Effects of leading edge defect on the aerodynamic and flow characteristics of an S809 airfoil[J]. Plos one, 2016, 11(9): e0163443.
[19] 俞国华. 水平轴风力机叶片失速问题研究[D]. 上海: 上海交通大学, 2013.
YU G H.A study of stall problems on horizontal axis wind turbine blades[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[20] 李仁年, 赵振希, 李德顺, 等. 风沙对风力机翼型绕流及其气动性能的影响[J]. 农业工程学报, 2018, 34(14): 205-211, 303.
LI R N, ZHAO Z X, LI D S, et al.Effect of wind sand on flow around airfoil of wind turbine and its aerodynamic performance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 205-211, 303.
[21] 胡丹梅, 李佳, 闫海津. 水平轴风力机翼型动态失速的数值模拟[J]. 中国电机工程学报, 2010, 30(20): 106-111.
HU D M, LI J, YAN H J.Numerical simulation of airfoil dynamic stall of horizontal axis wind turbine[J]. Proceedings of the CSEE, 2010, 30(20): 106-111.
[22] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 2012, 32(8): 1598-1605.
[23] MCALISTER K, PUCCI S, MCCROSKEY W, et al. An experimental study of dynamic stall on advanced airfoil sections. volume 2. pressure and force data[EB/OL].1982, https://ntrs.nasa.gov/citations/19820024438.
[24] 罗坤, 陈松, 蔡丹云, 等. 气固两相圆柱绕流近场特性的实验研究[J]. 中国电机工程学报, 2006, 26(24): 116-120.
LUO K, CHEN S, CAI D Y, et al.Experimental study of flow characteristics in the near field of gas-solid two-phase circular cylinder wakes[J]. Proceedings of the CSEE, 2006, 26(24): 116-120.
基金
国家自然科学基金(52166014; 51766009); 甘肃省基础研究创新群体项目(21JR7RA277); 直升机旋翼动力学重点实验室开放基金(JZX7Y201911SY004001); 兰州理工大学红柳优秀青年人才资助计划(2022)