地表太阳辐射短期预测方法研究进展

金存银, 张淑花, XingongLi, 田欠欠, 王倩茹, 王默涵

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 150-161.

PDF(1227 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1227 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 150-161. DOI: 10.19912/j.0254-0096.tynxb.2022-1246

地表太阳辐射短期预测方法研究进展

  • 金存银1, 张淑花1, XingongLi2, 田欠欠1, 王倩茹1, 王默涵3
作者信息 +

RESEARCH PROGRESS ON SHORT-TERM PREDICTION METHODS OF SURFACE SOLAR RADIATION

  • Jin Cunyin1, Zhang Shuhua1, Li Xingong2, Tian Qianqian1, Wang Qianru1, Wang Mohan3
Author information +
文章历史 +

摘要

根据太阳辐射预测使用的数据及预测方法,将目前地表太阳辐射短期预测方法归纳总结为4类:基于地面观测数据预测方法、基于卫星遥感观测预测方法、基于地基云图观测预测方法以及基于数值天气预报模式预测方法。分别阐述4类地表太阳辐射短期预测方法的研究进展,并对不同方法适用性及其优缺点进行评价,最后对未来短期地表太阳辐射预测方法进行展望。

Abstract

In this paper, according to the data sources and prediction methods used in short-term surface solar radiation prediction, the current short-term prediction methods of surface solar radiation are summarized into four categories: prediction methods based on ground observation data, based on remote sensing data, based on total sky images, and numerical weather prediction models. This paper presents the research progress of four short-term surface solar radiation prediction methods, and evaluates their applicability, advantages and disadvantages. Finally, the future development of the short-term surface solar radiation prediction methods is prospected.

关键词

太阳辐射 / 遥感 / 预测 / 统计模型 / 全天空成像仪 / 数值天气预报模式

Key words

solar radiation / remote sensing / prediction / statistical models / total sky imager / numerical weather prediction model

引用本文

导出引用
金存银, 张淑花, XingongLi, 田欠欠, 王倩茹, 王默涵. 地表太阳辐射短期预测方法研究进展[J]. 太阳能学报. 2023, 44(12): 150-161 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1246
Jin Cunyin, Zhang Shuhua, Li Xingong, Tian Qianqian, Wang Qianru, Wang Mohan. RESEARCH PROGRESS ON SHORT-TERM PREDICTION METHODS OF SURFACE SOLAR RADIATION[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 150-161 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1246
中图分类号: P40   

参考文献

[1] 吕宁. 近年来中国地表太阳辐射时空变化及影响因素分析[D]. 北京: 中国科学院地理科学与资源研究所, 2009.
LYU N.Analysis of spatio-temporal variation of surface downward shortwave radiation and associated effecting factors over China in recent years[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, 2009.
[2] 马金玉. 中国地面太阳辐射长期变化特征及短期预报方法研究[D]. 南京: 南京信息工程大学, 2011.
MA J Y.The long-term variation and short-term prediction method of surface solar radiation in China[D]. Nanjing: Nanjing University of Information Science and Technology,2011.
[3] 黎微微, 胡斯勒图, 陈洪滨, 等. 利用MODIS资料计算不同云天条件下的地表太阳辐射[J]. 遥感技术与应用,2017, 32(4): 643-650.
LI W W, HUSI L T, CHEN H B, et al.Estimation of surface solar radiation using MODIS satellite data and RSTAR model[J]. Remote sensing technology and application, 2017, 32(4): 643-650.
[4] 王小洁, 陈珍莉, 王旭, 等. 基于相似日和Elman神经网络的逐时太阳总辐射预测[J]. 海南大学学报(自然科学版), 2020, 38(4): 347-355.
WANG X J, CHEN Z L, WANG X, et al.Hourly total solar radiation prediction based on similar day and Elman neural network[J]. Natural science journal of Hainan University, 2020, 38(4): 347-355.
[5] 崔洋, 孙银川, 常倬林. 短期太阳能光伏发电预测方法研究进展[J]. 资源科学, 2013, 35(7): 1474-1481.
CUI Y, SUN Y C, CHANG Z L.A review of short-term solar photovoltaic power generation prediction methods[J]. Resources science, 2013, 35(7): 1474-1481.
[6] 孙朋杰, 陈正洪, 成驰, 等. 太阳能光伏电站发电量变化特征及其与气象要素的关系[J]. 水电能源科学, 2013, 31(11): 249-252.
SUN P J, CHEN Z H, CHENG C, et al.Relationship between meteorological factors and variation characteristics of electricity generation in solar photovoltaic power plant[J]. Water resources and power, 2013, 31(11): 249-252.
[7] 郁云, 许昌, 曹潇, 等. 云图纹理分析结合SVM的地表太阳辐射预测[J]. 西南师范大学学报(自然科学版), 2017, 42(12): 75-81.
YU Y, XU C, CAO X, et al.On ground solar radiation forecasting combined with textural feature extraction and SVM computer engineering and applications[J]. Journal of Southwest China Normal University (natural science edition), 2017, 42(12): 75-81.
[8] DONG J, OLAMA M M, KURUGANTI T, et al.Novel stochastic methods to predict short-term solar radiation and photovoltaic power[J]. Renewable energy, 2020, 145(C): 333-346.
[9] MORA-LÓPEZ L, SIDRACH-DE-CARDONA M. Multiplicative ARMA models to generate hourly series of global irradiation[J]. solar energy, 1998, 63(5): 283-291.
[10] BEHERA M K, NAYAK N.A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm[J]. Engineering science and technology, an international journal, 2020, 23(1): 156-167.
[11] 周海, 朱想, 金山红, 等. 超短期太阳辐照度多模型预测[J]. 中国科技论文, 2017, 12(23): 2695-2700.
ZHOU H, ZHU X, JIN S H, et al.Multi-model prediction for super short term solar irradiance[J]. China sciencepaper, 2017, 12(23): 2695-2700.
[12] MADUGU I S, OLUFEAGBA B J, ADEDIRAN Y A, et al.ARMA model for prediction of solar radiation in Kano-Nigeria[J]. Zaria journal of electrical engineering technology, 2019.
[13] BACHER P, MADSEN H,NIELSEN H A.Online short-term solar power forecasting[J]. Solar energy, 2009,83(10): 1772-1783.
[14] WANG L H, SHI J R.A comprehensive application of machine learning techniques for short-term solar radiation prediction[J]. Applied sciences, 2021, 11(13): 5808.
[15] SEIDEL F C, KOKHANOVSKY A A, SCHAEPMAN M E.Fast and simple model for atmospheric radiative transfer[J]. Atmospheric measurement techniques discussions, 2010, 3(4): 1129-1141.
[16] 马燕峰, 蒋云涛, 郝毅, 等. 基于非线性自回归神经网络的GHI预测[J]. 太阳能学报, 2019, 40(3): 733-740.
MA Y F, JIANG Y T, HAO Y, et al.GHI forecast based on nonlinear autoregressive neural network[J]. Acta energiae solaris sinica, 2019, 40(3): 733-740.
[17] GUTIERREZ-COREA F V, MANSO-CALLEJO M A, MORENO-REGIDOR M P, et al. Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations[J]. Solar energy, 2016, 134: 119-131.
[18] SORKUN M C, PAOLI C, INCEL Ö D.Time series forecasting on solar irradiation using deep learning[C]// The 10th International Conference on Electrical and Electronics Engineering(ELECO). Bursa, Turkey, 2017: 151-155.
[19] ALI M, PRASAD R, XIANG Y, et al.Variational mode decomposition based random forest model for solar radiation forecasting: new emerging machine learning technology[J]. Energy reports, 2021, 7: 6700-6717.
[20] AYET A, TANDEO P.Nowcasting solar irradiance using an analog method and geostationary satellite images[J]. Solar energy, 2018, 164: 301-315.
[21] KALLIO-MYERS V, RIIHELÄ A, LAHTINEN P, et al.Global horizontal irradiance forecast for Finland based on geostationary weather satellite data[J]. Solar energy, 2020, 198: 68-80.
[22] PINKER R T, FROUIN R, LI Z.A review of satellite methods to derive surface shortwave irradiance[J]. Remote sensing of environment, 1995, 51(1): 108-124.
[23] YANG L W, GAO X Q, HUA J J, et al.Intra-day global horizontal irradiance forecast using FY-4A clear sky index[J]. Sustainable energy technologies and assessments, 2022, 50: 101816.
[24] RODRÍGUEZ-BENÍTEZ F J, LÓPEZ-CUESTA M, ARBIZU-BARRENA C, et al. Assessment of new solar radiation nowcasting methods based on sky-camera and satellite imagery[J]. Applied energy, 2021, 292(6): 116838.
[25] DU J A, MIN Q L, ZHANG P L, et al.Short-term solar irradiance forecasts using sky images and radiative transfer model[J]. Energies, 2018, 11(5): 1107.
[26] BERNECKER D, RIESS C, ANGELOPOULOU E, et al.Continuous short-term irradiance forecasts using sky images[J]. Solar energy, 2014, 110: 303-315.
[27] 蒋俊霞, 高晓清, 吕清泉, 等. 基于地基云图的云跟踪与太阳辐照度超短期预报方法研究[J]. 太阳能学报, 2020, 41(5): 351-358.
JIANG J X, GAO X Q, LYU Q Q, et al.Study on cloud tracking and solar irradiance ultra-short-term forecasting based on TSI images[J]. Acta energiae solaris sinica, 2020, 41(5): 351-358.
[28] EL ALANI O, ABRAIM M, GHENNIOUI H, et al.Short term solar irradiance forecasting using sky images based on a hybrid CNN-MLP model[J]. Energy reports, 2021, 7: 888-900.
[29] KAMADINATA J O, KEN T L, SUWA T.Sky image-based solar irradiance prediction methodologies using artificial neural networks[J]. Renewable energy, 2019, 134: 837-845.
[30] RYU A, ITO M, ISHII H, et al.Preliminary analysis of short-term solar irradiance forecasting by using total-sky imager and convolutional neural network[C]//2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 2019: 627-631.
[31] JIANG J X, LYU Q Q, GAO X Q.The ultra-short-term forecasting of global horizonal irradiance based on total sky images[J]. Remote sensing, 2020, 12(21): 3671.
[32] DEV S, SAVOY F M, LEE Y H, et al.Estimating solar irradiance using sky imagers[J]. Atmospheric measurement techniques, 2019, 12(10): 5417-5429.
[33] BAUER P, THORPE A, BRUNET G.The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525(7567): 47-55.
[34] ARBIZU-BARRENA C, RUIZ-ARIAS J A, RODRÍGUEZ-BENÍTEZ F J, et al. Short-term solar radiation forecasting by advecting and diffusing MSG cloud index[J]. Solar energy, 2017, 155: 1092-1103.
[35] ZHOU Y, LIU Y F, WANG D J, et al.A review on global solar radiation prediction with machine learning models in a comprehensive perspective[J]. Energy conversion and management, 2021, 235: 113960.
[36] GUERMOUI M, MELGANI F, GAIRAA K, et al.A comprehensive review of hybrid models for solar radiation forecasting[J]. Journal of cleaner production, 2020, 258: 120357.
[37] AICARDI D, MUSÉ P, ALONSO-SUÁREZ R. A comparison of satellite cloud motion vectors techniques to forecast intra-day hourly solar global horizontal irradiation[J]. Solar energy, 2022, 233: 46-60.
[38] LIN F, ZHANG Y, WANG J X.Recent advances in intra-hour solar forecasting: a review of ground-based sky image methods[J]. International journal of forecasting, 2023, 39(1): 244-265.
[39] CHU Y H, LI M Y, COIMBRA C F M, et al. Intra-hour irradiance forecasting techniques for solar power integration: a review[J]. Iscience, 2021, 24(10): 103136.
[40] BARBIERI F, RAJAKARUNA S, GHOSH A.Very short-term photovoltaic power forecasting with cloud modeling: a review[J]. Renewable and sustainable energy reviews, 2017, 75: 242-263.
[41] GB/T 19964—2012, 光伏发电站接入电力系统技术规定[S].
GB/T 19964—2012, Technical requirements for connecting photovoltaic power station to power system[S].
[42] 陈文. 基于晴朗指数的超短期太阳辐射预测算法的研究[D]. 武汉: 华中科技大学, 2018.
CHEN W.Research on ultra-short term solar radiation forecast algorithm based on clearness index[D]. Wuhan: Huazhong University of Science and Technology, 2018.
[43] 徐维. 基于时间序列分析的短时间尺度太阳辐射模型研究[J]. 常州工学院学报, 2009, 22(S1): 41-44.
XU W.The designing of establishing modeling simulation and forecasting methods for short-term solar irradiance based on time scale[J]. Journal of Changzhou Institute of Technology, 2009, 22(S1): 41-44.
[44] REIKARD G.Predicting solar radiation at high resolutions: a comparison of time series forecasts[J]. Solar energy, 2009, 83(3): 342-349.
[45] DAS S.Short term forecasting of solar radiation and power output of 89.6 kWp solar PV power plant[J]. Materials today: proceedings, 2021, 39: 1959-1969.
[46] 张雪松, 朱想, 赵波, 等. 基于WT-PLSP 的太阳辐射短期预测[J]. 干旱区资源与环境, 2017, 31(6): 142-146.
ZHANG X S, ZHU X, ZHAO B, et al.Short - term forecast of solar radiation based on WT-PLSP[J]. Journal of arid land resources and environment, 2017, 31(6): 142-146.
[47] 蒋锋, 杨嘉伟. 基于多目标优化集成学习的短期太阳辐射预测[J]. 云南大学学报(自然科学版), 2021, 43(3): 451-461.
JIANG F, YANG J W.Short-term solar radiation forecast based on ensemble learning of multi-objective optimization[J]. Journal of Yunnan University (natural sciences edition), 2021, 43(3): 451-461.
[48] MUKHTAR M, OLUWASANMI A, YIMEN N, et al.Development and comparison of two novel hybrid neural network models for hourly solar radiation prediction[J]. Applied sciences, 2022, 12(3): 1435.
[49] 周满国, 黄艳国, 段锦锋. 基于GRU-RF模型的太阳辐照度短时预测[J]. 太阳能学报, 2022, 43(7): 166-173.
ZHOU M G, HUANG Y G, DUAN J F.Short term prediction of soral irradiance based on GRU-RF model[J]. Acta energiae solaris sinica, 2022, 43(7): 166-173.
[50] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[51] ZHU T T, GUO Y R, WANG C, et al.Inter-hour forecast of solar radiation based on the structural equation model and ensemble model[J]. Energies, 2020, 13(17): 4534.
[52] QUAN H, YANG D Z.Probabilistic solar irradiance transposition models[J]. Renewable and sustainable energy reviews, 2020, 125: 109814.
[53] 艾逸阳. 基于地基云图的超短期光伏电站辐照度预测研究[D]. 杭州: 浙江大学, 2018.
AI Y Y.Very short-term solar irradiance forecast based on sky images[D]. Hangzhou: Zhejiang University, 2018.
[54] 陈志宝,丁杰,周海,等. 地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J]. 中国电机工程学报, 2015, 35(3): 561-567.
CHEN Z B, DING J, ZHOU H, et al.A model of very short-term photovoltaic power forecasting based on ground-based cloud images and RBF neural network[J]. Proceedings of the CSEE, 2015, 35(3): 561-567.
[55] HAMMER A, HEINEMANN D, LORENZ E, et al.Short-term forecasting of solar radiation: a statistical approach using satellite data[J]. Solar energy, 1999, 67(1/2/3): 139-150.
[56] LORENZ E, HAMMER A, HEINEMANN D.Short term forecasting of solar radiation based on satellite data[C]//EUROSUN2004(ISES Europe Solar Congress). Freiburg, Germany, 2004: 1.
[57] CROS S, BADOSA J, SZANTAI A, et al.Reliability predictors for solar irradiance satellite-based forecast[J]. Energies, 2020, 13(21): 5566.
[58] YANG L W, GAO X Q, HUA J J, et al.Very short-term surface solar irradiance forecasting based on FengYun-4 geostationary satellite[J]. Sensors, 2020, 20(9): 2606.
[59] ROY A, HAMMER A, HEINEMANN D, et al.Impact of tropical convective conditions on solar irradiance forecasting based on cloud motion vectors[J]. Environmental research letters, 2022, 17(10): 104048.
[60] OH M, KIM C K, KIM B, et al.Spatiotemporal optimization for short-term solar forecasting based on satellite imagery[J]. Energies, 2021, 14(8): 2216.
[61] NIELSEN A H, IOSIFIDIS A, KARSTOFT H.IrradianceNet: spatiotemporal deep learning model for satellite-derived solar irradiance short-term forecasting[J]. Solar energy, 2021, 228: 659-669.
[62] MARQUEZ R, PEDRO H T C, COIMBRA C F M. Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs[J]. Solar energy, 2013, 92: 176-188.
[63] DONG Z B, YANG D Z, REINDL T, et al.Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics[J]. Energy conversion and management, 2014, 79(3): 66-73.
[64] PALMER D, KOUBLI E, COLE I, et al.Satellite or ground-based measurements for production of site specific hourly irradiance data: which is most accurate and where?[J]. Solar energy, 2018, 165: 240-255.
[65] SHIELDS J E, KARR M E, JOHNSON R W, et al.Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview[J]. Applied optics, 2013, 52(8): 1605-1616.
[66] MARQUEZ R, COIMBRA C F M. Intra-hour DNI forecasting based on cloud tracking image analysis[J]. Solar energy, 2013, 91: 327-336.
[67] FENG C, ZHANG J.SolarNet: a sky image-based deep convolutional neural network for intra-hour solar forecasting[J]. Solar energy, 2020, 204: 71-78.
[68] FENG C, ZHANG J, ZHANG W Q, et al.Convolutional neural networks for intra-hour solar forecasting based on sky image sequences[J]. Applied energy, 2022, 310: 118438.
[69] ZHANG C, DU Y, CHEN X Y, et al.Cloud motion tracking system using low-cost sky imager for PV power ramp-rate control[C]//2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems(IESES). Hamilton, New Zealand, 2018: 493-498.
[70] ALONSO-MONTESINOS J, BATLLES F J, PORTILLO C.Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images[J]. Energy conversion and management, 2015, 105: 1166-1177.
[71] AI Y Y, PENG Y G, WEI W.A model of very short-term solar irradiance forecasting based on low-cost sky images[C]//AIP Conference Proceedings. Hangzhou, China, 2017: 020022.
[72] 王聪. 基于数值和地基云图的太阳辐射超短期预测研究[D]. 南京: 南京林业大学, 2021.
WANG C.Super-short term forecast of solar irradiance based on numerical and ground-based cloud images[D]. Nanjing: Nanjing Forestry University, 2021.
[73] 朱婷婷. 基于地基云图的太阳直接辐照度超短期预测研究[D]. 南京: 东南大学, 2019.
ZHU T T.Research on inter-hour forecast of direct normal irradiance based on ground-based cloud images[D]. Nanjing: Southeast University, 2019.
[74] 马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7): 679-687.
MA L M, BAO X W.Research progress on physical parameterization schemes in numerical weather prediction models[J]. Advances in earth science, 2017, 32(7): 679-687.
[75] BLAGA R, SABADUS A, STEFU N, et al.A current perspective on the accuracy of incoming solar energy forecasting[J]. Progress in energy and combustion science, 2019, 70: 119-144.
[76] PEREZ R, KIVALOV S, SCHLEMMER J, et al.Validation of short and medium term operational solar radiation forecasts in the US[J]. Solar energy, 2010, 84(12): 2161-2172.
[77] JIMÉNEZ P A, ALESSANDRINI S, HAUPT S E, et al. The role of unresolved clouds on short-range global horizontal irradiance predictability[J]. Monthly weather review, 2016, 144(9): 3099-3107.
[78] RUIZ-ARIAS J A, DUDHIA J, GUEYMARD C A. A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model[J]. Geoscientific model development, 2014, 7(3): 1159-1174.
[79] JIMÉNEZ P A, HACKER J P, DUDHIA J, et al. WRF-SOLAR: description and clear-sky assessment of an augmented NWP model for solar power prediction[J]. Bulletin of the American Meteorological Society, 2016, 97(7): 1249-1264.
[80] 董旭光, 陈艳春, 孟祥新. WRF-Solar 模式对山东太阳总辐射的模拟效果检验[J]. 海洋气象学报, 2021, 41(4): 36-51.
DONG X G, CHEN Y C, MENG X X.Performance evaluation of solar irradiance simulation over Shandong using WRF-Solar numerical model[J]. Journal of marine meteorology, 2021, 41(4): 36-51.
[81] MCCANDLESS T, JIMÉNEZ P A. Examining the potential of a random forest derived cloud mask from GOES-R satellites to improve solar irradiance forecasting[J]. Energies, 2020, 13(7): 1671.
[82] HAUPT S E.A public-private-academic partnership to advance solar forecasting[C]//Proceedings of 42nd American Solar Energy Society Annual Conference. Baltimore, Maryland, 2013.
[83] JIMÉNEZ P A, DUDHIA J, THOMPSON G, et al. Improving the cloud initialization in WRF-solar with enhanced short-range forecasting functionality: the MAD-WRF model[J]. Solar energy, 2022, 239: 221-233.
[84] MATHIESEN P, COLLIER C, KLEISSL J.A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting[J]. Solar energy, 2013, 92: 47-61.
[85] MATHIESEN P J, COLLIER C, KLEISSL J P.Development and validation of an operational, cloud-assimilating numerical weather prediction model for solar irradiance forecasting[C]//Proceedings of ASME 2012 6th international Conference on Energy Sustainability Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering And Technology. San Diego, California, USA, 2013: 955-964.
[86] PIERRO M, BUCCI F, CORNARO C, et al.Model output statistics cascade to improve day ahead solar irradiance forecast[J]. Solar energy, 2015, 117: 99-113.
[87] GLAHN H R, LOWRY D A.The use of model output statistics (MOS) in objective weather forecasting[J]. Journal of applied meteorology and climatology, 1972, 11(8): 1203-1211.
[88] VERZIJLBERGH R A, HEIJNEN P W, DE ROODE S R, et al. Improved model output statistics of numerical weather prediction based irradiance forecasts for solar power applications[J]. Solar energy, 2015, 118: 634-645.
[89] LAURET P, DIAGNE H M, DAVID M.A neural network post-processing approach to improving NWP solar radiation forecasts[J]. Energy procedia, 2014, 57: 1044-1052.
[90] 刘唯佳. 基于云参量的太阳辐射短时临近预报模型的构建及预报评估[D]. 南京: 南京信息工程大学, 2021.
LIU W J.Construction and evaluation of cloud-property based solar radiation short term forecast systems[D]. Nanjing: Nanjing University of Information Science and Technology, 2021.
[91] CHAABENE M, BEN A M.Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems[J]. Renewable energy, 2008, 33(7): 1435-1443.
[92] PEDRO H T C, COIMBRA C F M. Short-term irradiance forecastability for various solar micro-climates[J]. Solar energy, 2015, 122: 587-602.
[93] WANG Z, WANG F, SU S.Solar irradiance short-term prediction model based on BP neural network[J]. Energy procedia, 2011, 12: 488-494.
[94] MONJOLY S, ANDRÉ M, CALIF R, et al.Hourly forecasting of global solar radiation based on multiscale decomposition methods: a hybrid approach[J]. Energy, 2017, 119: 288-298.
[95] REIKARD G, HANSEN C.Forecasting solar irradiance at short horizons: frequency and time domain models[J]. Renewable energy, 2019, 135: 1270-1290.
[96] 高碧轩. 基于机器学习算法的中短期太阳辐照度预测研究[D]. 昆明: 云南师范大学, 2020.
GAO B X.The medium and short term solar irradiance forecasting research based on machine learning algorithms[D]. Kunming: Yunnan Normal University, 2020.
[97] 黄小乔. 基于深度学习的超短期太阳辐照度预测模型研究[D]. 昆明: 云南师范大学, 2021.
HUANG X Q.Research on intra-hour solar irradiance prediction model based on deep learning[D]. Kunming: Yunnan Normal University, 2021.
[98] ALI-OU-SALAH H, OUKARFI B, MOUHAYDINE T. Short-term solar radiation forecasting using a new seasonal clustering technique and artificial neural network[J]. International journal of green energy, 2022, 19(4): 424-434.
[99] NKOUNGA W M, NDIAYE M F, CISSE O, et al.Short-term multi horizons forecasting of solar irradiation based on artificial neural network with meteorological data: application in the north-west of Senegal[C]//2021 Sixteenth International Conference on Ecological Vehicles and Renewable Energies (EVER). Monte-Carlo, Monaco, 2021: 1-8.
[100] MILLER S D, ROGERS M A, HAYNES J M, et al.Short-term solar irradiance forecasting via satellite/model coupling[J]. Solar energy, 2018, 168: 102-117.
[101] SI Z Y, YANG M, YU Y X, et al.Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied energy, 2021, 302: 117514.
[102] QIN J, JIANG H, LU N, et al.Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning[J]. Renewable and sustainable energy reviews, 2022, 167: 112680.
[103] YANG H D, KURTZ B, NGUYEN D, et al.Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego[J]. Solar energy, 2014, 103: 502-524.
[104] QUESADA-RUIZ S, CHU Y, TOVAR-PESCADOR J, et al.Cloud-tracking methodology for intra-hour DNI forecasting[J]. Solar energy, 2014, 102: 267-275.
[105] NOU J, CHAUVIN R, EYNARD J, et al.Towards the short-term forecasting of direct normal irradiance using a sky imager[J]. IFAC-Papersonline, 2017, 50(1): 14137-14142.
[106] CALDAS M, ALONSO-SUÁREZ R. Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements[J]. Renewable energy, 2019, 143: 1643-1658.
[107] TEERAKAWANICH N, LEELARUJI T, PICHETJAMR-OEN A.Short term prediction of sun coverage using optical flow with GoogLeNet[J]. Energy reports, 2020, 6: 526-531.
[108] BUSTER G, BANNISTER M, HABTE A, et al.Physics-guided machine learning for improved accuracy of the National Solar Radiation Database[J]. Solar energy, 2022, 232: 483-492.
[109] CHU Y H, PEDRO H T C, COIMBRA C F M. Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning[J]. Solar energy, 2013, 98: 592-603.
[110] GALA Y, FERNÁNDEZ Á, DÍAZ J, et al. Hybrid machine learning forecasting of solar radiation values[J]. Neurocomputing, 2016, 176: 48-59.
[111] AJITH M, MARTÍNEZ-RAMÓN M. Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data[J]. Applied energy, 2021, 294: 117014.
[112] SHAN S, LI C X, DING Z T, et al.Ensemble learning based multi-modal intra-hour irradiance forecasting[J]. Energy conversion and management, 2022, 270: 116206.
[113] 林艳彬. 基于异构数据融合的超短期太阳能预测[D]. 厦门: 厦门大学, 2019.
LIN Y B.Very-short-term solar prediction based on heterogeneous data fusion[D]. Xiamen: Xiamen University, 2019.
[114] 杨春熙. 基于多源数据融合的短期太阳辐照度预测研究[D]. 南京: 南京信息工程大学, 2020.
YANG C X.Short-term forecasting for solar irradiance based on multi-source data fusion[D]. Nanjing: Nanjing University of Information Science and Technology, 2020.
[115] YANG D Z, QUAN H, DISFANI V R, et al.Reconciling solar forecasts: temporal hierarchy[J]. Solar energy, 2017, 158: 332-346.
[116] YANG D Z.Validation of the 5-min irradiance from the National Solar Radiation Database(NSRDB)[J]. Journal of renewable and sustainable energy, 2021, 13(1): 016101.
[117] ZHANG G, YANG D Z, GALANIS G, et al.Solar forecasting with hourly updated numerical weather prediction[J]. Renewable and sustainable energy reviews, 2022, 154: 111768.
[118] YANG D Z, WANG W T, GUEYMARD C A, et al.A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: towards carbon neutrality[J]. Renewable and sustainable energy reviews, 2022, 161: 112348.

基金

陕西省教育厅一般专项科研计划项目(21JK0770); 国家自然科学基金(41701442; 41977059)

PDF(1227 KB)

Accesses

Citation

Detail

段落导航
相关文章

/