基于多自由度运动条件下风力机动力学特性研究

张步恩, 余烈, 杨磊, 赵振宙, 刘惠文, 郑源

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 303-310.

PDF(2426 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2426 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 303-310. DOI: 10.19912/j.0254-0096.tynxb.2022-1276

基于多自由度运动条件下风力机动力学特性研究

  • 张步恩1, 余烈2, 杨磊3, 赵振宙4, 刘惠文4, 郑源4
作者信息 +

DYNAMIC CHARACTERISTICS OF WIND TURBINE WITH MULTIPLE ROTATIONAL DEGREES OF FREEDOM

  • Zhang Buen1, Yu Lie2, Yang Lei3, Zhao Zhenzhou4, Liu Huiwen4, Zheng Yuan4
Author information +
文章历史 +

摘要

该文提出耦合无规则、多自由度旋转运动的风力机试验方案,通过物理模型试验,研究风电场阵列布置、不同风力机轴向间距工况下,各排风力机来流速度、功率及其波动特性。结合功率时间尺度积分的概念,探究其与风力机平均输出功率的关系,并建立预测功率波动特征的数学模型。研究结果表明:风力机的来流速度有大尺度、低频率和小尺度、高频率的信号特征,从功率时间尺度积分的趋势可看出,处于下游的风力机,功率波动逐渐增加。由功率能谱特性曲线可知功率波动的能量随着频率的增大而衰减,在低频率段衰减曲线近似f -2的变化规律;在高频率段,能谱特性曲线近似f -5/3-2的变化规律。

Abstract

A project of model wind turbine with irregular and multi-degree of freedom motions was designed in this paper. Laboratory experiments were carried out to quantify incoming flow and power fluctuation characteristics of model wind turbines under different axial spacing conditions in wind farm within uniform arrays. The characteristics of the mean output power with the power integral time scale were studied. Then a math model for predicting the characteristics of the power fluctuation characteristics was deduced. Results suggested that the characteristics of incoming flow are large scales in the low frequency domains and small scales in the high frequency domains. We found some points from the evolution of power integral length scale that the power fluctuation characteristics of the model turbines increase in the streamwise. The energy of power fluctuations decreases as the frequency increases, but the slope of the energy curve is similar to f -2in the low frequency domains, and is similar to f -5/3-2 in the high frequency domains.

关键词

风力机 / 风电场 / 动力学特性 / 模型 / 平均输出功率 / 功率波动

Key words

wind turbines / wind farm / dynamics characteristics / models / mean output power / power fluctuations

引用本文

导出引用
张步恩, 余烈, 杨磊, 赵振宙, 刘惠文, 郑源. 基于多自由度运动条件下风力机动力学特性研究[J]. 太阳能学报. 2023, 44(7): 303-310 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1276
Zhang Buen, Yu Lie, Yang Lei, Zhao Zhenzhou, Liu Huiwen, Zheng Yuan. DYNAMIC CHARACTERISTICS OF WIND TURBINE WITH MULTIPLE ROTATIONAL DEGREES OF FREEDOM[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 303-310 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1276
中图分类号: TK89   

参考文献

[1] 张步恩, 郑源, 余运錩, 等. 新型浮筒式波浪能发电装置试验研究[J]. 太阳能学报, 2019, 40(4): 898-905.
ZHANG B E, ZHENG Y, YU Y C, et al.Experimental research of a new floating-buoy wave energy converter[J]. Acta energiae solaris sinica, 2019, 40(4): 898-905.
[2] 张步恩, 郑源, 付士凤, 等. 一种新型波浪能发电转换装置试验研究[J]. 中国电机工程学报, 2019, 39(24): 7263-7271.
ZHANG B E, ZHENG Y, FU S F, et al.Experimental study of a new type wave energy converter[J]. Proceedings of the CSEE, 2019, 39(24): 7263-7271.
[3] National Centers For Environmental Information. Assessing the Global Climate in January 2020[Z]. 2020.
[4] 张自然. 中国经济增长报告:2017-2018.迈向高质量的经济发展[M]. 北京: 社会科学文献出版社, 2018.
ZHANG Z R.Annual report on China economic growth, toward high-quality economic development[M]. Beijing: Social Sciences Academic Press, 2018.
[5] WANG J Z, QIN S S, JIN S Q, et al.Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources[J]. Renewable & sustainable energy reviews, 2015, 42: 26-42.
[6] TAMBKE J, LANGE M, FOCKEN J, et al.Forecasting offshore wind speeds above the North Sea[J]. Wind energy, 2005, 8(1): 3-16.
[7] 邢小文, 孟洪民, 谢利理. 大惯量风力发电系统功率波动平抑控制策略综述[J]. 华北电力大学学报(自然科学版), 2018, 45(1): 31-38.
XING X W, MENG H M, XIE L L.Reviews on power smoothing control strategies for large-inertia wind turbine generation system[J]. Journal of North China Electric Power University(natural science edition), 2018, 45(1): 31-38.
[8] 李征, 陈佳瑜, 石坤. 风电功率波动频率域分析及储能平滑功率算法优化[J]. 太阳能学报, 2020, 41(4): 184-193.
LI Z, CHEN J Y, SHI K.Frequency domain analysis of wind power fluctuation and control strategy optimization of power smoothing[J]. Acta energiae solaris sinica, 2020, 41(4): 184-193.
[9] 王雪丽, 张立茹, 张嘉奇, 等. 基于流固耦合偏航工况下风力机输出功率的研究[J]. 工程热物理学报, 2021, 42(3): 641-646.
WANG X L, ZHANG L R, ZHANG J Q, et al.Study on wind turbine output power based on fluid -solid coupling yaw[J]. Journal of engineering thermophysics, 2021, 42(3): 641-646.
[10] 温斌荣, 魏莎, 魏克湘, 等. 风切变和塔影效应对风力机输出功率的影响[J]. 机械工程学报, 2018, 54(10): 124-132.
WEN B R, WEI S, WEI K X, et al.Influences of wind shear and tower shadow on the power output of wind turbine[J]. Journal of mechanical engineering, 2018, 54(10): 124-132.
[11] 周天熠, 谭剑锋, 孙义鸣, 等. 三维连续丘陵对NREL风力机功率特性的影响分析[J]. 太阳能学报, 2021, 42(4): 359-365.
ZHOU T Y, TAN J F, SUN Y M, et al.Analysis of influence of three-dimensional continuous hill on power characteristics of NREL wind turbine[J]. Acta energiae solaris sinica, 2021, 42(4): 359-365.
[12] ZHANG B E, CHENG S Y, LU F H, et al.Impact of Topographic steps in the wake and power of a wind turbine: part A—statistics[J]. Energies, 2020, 13(23): 6411.
[13] ZHANG B E, JIN Y Q, CHENG S Y, et al.On the dynamics of a model wind turbine under passive tower oscillations[J]. Applied energy, 2022, 311: 118608.
[14] FU S F, JIN Y Q, ZHENG Y, et al.Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations[J]. Applied energy, 2019, 253: 113605.
[15] FU S F, ZHANG B E, ZHENG Y, et al.In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays[J]. Applied energy, 2020, 269: 114921.
[16] HAYAT I, CHATTERJEE T, LIU H, et al.Exploring wind farms with alternating two-and three-bladed wind turbines[J]. Renewable energy, 2019, 138: 764-774.
[17] 郭玉立, 文泽军. 基于孪生支持向量回归的风力机功率预测方法[J]. 制造业自动化, 2021, 43(5): 59-62, 88.
GUO Y L, WEN Z J.Wind turbine power prediction method based on twin support vector regression[J]. Manufacturing automation, 2021, 43(5): 59-62, 88.
[18] 李荣富, 方龙, 宁巧珍, 等. 半潜式与固定式海上风力机气动性能水池模型试验对比研究[J]. 可再生能源, 2022, 40(7): 914-920.
LI R F, FANG L, NING Q Z, et al.A comparative experimental study on floating and fixed bottom offshore wind turbines[J]. Renewable energy resources, 2022, 40(7): 914-920.
[19] 魏东泽, 白兴兰, 黄维平, 等. 半潜式海上风力机涡激运动试验研究[J]. 太阳能学报, 2021, 42(2): 179-184.
WEI D Z, BAI X L, HUANG W P, et al.Experimental study on VIM of semi-submersible offshore wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 179-184.
[20] 韩星星, 许昌, Shen Wenzhong, 等. 大气稳定度对山地风力机功率影响研究[J]. 工程热物理学报, 2021, 42(7): 1733-1742.
HAN X X, XU C, SHEN W Z, et al.A study of the influence of armospheric stability on wind turbine power in complex terrain[J]. Journal of engineering thermophysics, 2021, 42(7): 1733-1742.
[21] BAYNE S B, Giesselmann M G.Effect of blade passing on a wind turbine output[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC)(Cat. No.00CH37022), Las Vegas, NV, USA, 2000: 775-781.
[22] THIRINGER, TORBJORN.Power quality measurements performed on a low-voltage grid equipped with two wind turbines[J]. IEEE transactions on energy conversion, 1996, 11(3): 601-606.
[23] POUL S A, HANSEN A D, ROSAS P A C. Wind models for simulation of power fluctuations from wind farms[J]. Journal of wind engineering & industrial aerodynamics, 2002, 90(12/13/14/15): 1381-1402.
[24] ADRIAN R J, MEINHART C D, TOMKINS C D.Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of fluid mechanics, 2000, 422: 1-54.
[25] 刘惠文, 郑源, 张玉全, 等. 风电场湍流积分长度演变实验研究[J]. 太阳能学报, 2020, 41(9): 331-337.
LIU H W, ZHENG Y, ZHANG Y Q, et al.Experimental investigation on evolution of integral length scale within wind farm[J]. Acta energiae solaris sinica, 2020, 41(9): 331-337.
[26] LEBLE V, BARAKOS G.10-MW wind turbine performance under pitching and yawing motion[J]. Journal of solar energy engineering, 2017, 139(4): 041003.
[27] WU C H K, NGUYEN V T. Aerodynamic simulations of offshore floating wind turbine in platform-induced pitching motion[J]. Wind energy, 2017, 20: 835-858.
[28] BAYATI I, BELLOI M, et al.Wind tunnel validation of AeroDyn within LIFES50 project: imposed surge and pitch tests[J]. Journal of physics: conference series, 2016, 753(9): DOI 10.1088/1742-6596/753/9/092001.
[29] TRAN T T, KIM D H.The platform pitching motion of floating offshore wind turbine: A preliminary unsteady aerodynamic analysis[J]. Journal of wind engineering & industrial aerodynamics, 2015, 142: 65-81.
[30] TRAN T T, KIM D H.The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions[J]. Journal of mechanical science & technology, 2015, 29(2): 549-561.
[31] JEON M n, LEE S M, LEE S G. Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method[J]. Renewable energy, 2014, 65: 207-212.
[32] LIU H W, JIN Y Q, TOBIN N, et al.Towards uncovering the structure of power fluctuations of wind farms[J]. Physical review E, 2017, 96(6): 063117.
[33] LIU H W, HAYAT I, JIN Y Q, et al.On the evolution of the integral time scale within wind farms[J]. Energies, 2018, 11(1): 93.

基金

国家重点研发计划政府间国际科技创新合作项目(2019YFE0105200); 国家自然科学基金项目(52271275); 江苏省自然科学基金青年项目(BK20210370); 国家自然科学基金青年项目(52106239)

PDF(2426 KB)

Accesses

Citation

Detail

段落导航
相关文章

/