基于Kmeans++-Bi-LSTM的太阳辐照度超短期预测

官松泽, 唐钰本, 蔡争, 吴凌涛, 郑含博, 覃团发

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 170-174.

PDF(1871 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1871 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 170-174. DOI: 10.19912/j.0254-0096.tynxb.2022-1294

基于Kmeans++-Bi-LSTM的太阳辐照度超短期预测

  • 官松泽1, 唐钰本2, 蔡争3, 吴凌涛3, 郑含博2, 覃团发3,4
作者信息 +

ULTRA-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON KMEANS++-BI-LSTM

  • Guan Songze1, Tang Yuben2, Cai Zheng3, Wu Lingtao3, Zheng Hanbo2, Qin Tuanfa3,4
Author information +
文章历史 +

摘要

针对地表太阳辐射的不确定性和随机波动性,进而对大型光伏发电并网对电力系统的稳定性造成冲击,提出一种新的太阳辐照度超短期预测方案。该方案通过使用皮尔逊相关性分析和无监督学习中的Kmeans++算法,对多种气象数据进行筛选,找出关键气象数据并进行划分以及添加标签,接着将带有标签的关键气象数据输入双向长短期记忆网络预测模型中,以达到10 min时间间隔的太阳辐照度超短期预测。结果表明所提预测模型相较于目前常用的模型提高了预测精度。

Abstract

A new ultra-short-term prediction scheme for solar irradiance is proposed to address the uncertainty and stochastic fluctuations of surface solar radiation, which in turn has an impact on the stability of large-scale photovoltaic power grid connection to the power system. The scheme uses Pearson correlation analysis and the Kmeans++ algorithm in unsupervised learning to filter multiple meteorological data, identify and classify key meteorological data and add labels to them, and then feed the labelled key meteorological data into a bi-directional long-short term memory network prediction model to achieve a 10-minute ultra-short-term forecast of solar irradiance. The results show that the proposed prediction model has lower root mean square error and lower mean absolute error than the currently used models.

关键词

太阳辐射 / 预测 / 聚类分析 / 超短期 / 双向长短期记忆网络

Key words

solar radiation / forecasting / cluster analysis / ultra-short-term / bi-directional long short-term memory network

引用本文

导出引用
官松泽, 唐钰本, 蔡争, 吴凌涛, 郑含博, 覃团发. 基于Kmeans++-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报. 2023, 44(12): 170-174 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1294
Guan Songze, Tang Yuben, Cai Zheng, Wu Lingtao, Zheng Hanbo, Qin Tuanfa. ULTRA-SHORT-TERM FORECAST OF SOLAR IRRADIANCE BASED ON KMEANS++-BI-LSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 170-174 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1294
中图分类号: TM615   

参考文献

[1] ZHU T T, ZHOU H, WEI H K, et al.Inter-hour direct normal irradiance forecast with multiple data types and time-series[J]. Journal of modern power systems and clean energy, 2019, 7(5): 1319-1327.
[2] LORENZ E, SCHEIDSTEGER T, HURKA J, et al.Regional PV power prediction for improved grid integration[J]. Progress in photovoltaics: research and applications, 2011, 19(7): 757-771.
[3] CHU Y H, LI M Y, COIMBRA C F M, et al. Intra-hour irradiance forecasting techniques for solar power integration: a review[J]. Iscience, 2021, 24(10): 103136.
[4] PEDRO H T C, LARSON D P, COIMBRA C F M. A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods[J]. Journal of renewable and sustainable energy, 2019, 11(3): 036102.
[5] LARSON D P, NONNENMACHER L, COIMBRA C F M. Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest[J]. Renewable energy, 2016, 91: 11-20.
[6] 米增强, 王飞, 杨光, 等. 光伏电站辐照度ANN预测及其两维变尺度修正方法[J]. 太阳能学报, 2013, 34(2): 251-259.
Mi Z Q, WANG F, YANG G, et al.ANN based irradiance forecast of photovoltaic power plant and two dimensions variable scale modification method for the forecast value[J]. Acta energiae solaris sinica, 2013, 34(2): 251-259.
[7] INMAN R H, PEDRO H T C, COIMBRA C F M. Solar forecasting methods for renewable energy integration[J]. Progress in energy and combustion science, 2013, 39(6): 535-576.
[8] CHU Y H, URQUHART B, GOHARI S M I, et al. Short-term reforecasting of power output from a 48 MWe solar PV plant[J]. Solar energy, 2015, 112: 68-77.
[9] 马燕峰, 蒋云涛, 郝毅, 等. 基于非线性自回归神经网络的GHI预测[J]. 太阳能学报, 2019, 40(3): 733-740.
MA Y F, JIANG Y T, HAO Y, et al.GHI forecast based on nonlinear autoregressive neural network[J]. Acta energiae solaris sinica, 2019, 40(3): 733-740.
[10] 赵书强, 尚煜东, 杨燕燕, 等. 基于长短期记忆神经网络的地表太阳辐照度预测[J]. 太阳能学报, 2021, 42(3): 383-388.
ZHAO S Q, SHANG Y D, YANG Y Y, et al.Short-term solar irradiation forecast based on lstm neural network[J]. Acta energiae solaris sinica, 2021, 42(3): 383-388.
[11] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-BI-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.

基金

2020年度南宁市创新创业领军人才(团队)“邕江计划”项目(2020006); 广西重点研发计划(AB23026037)

PDF(1871 KB)

Accesses

Citation

Detail

段落导航
相关文章

/